Abstract:
A method and circuits are disclosed for refreshing a memory module. After receiving a refresh address identifying a word line to be refreshed, the refresh address is located in one of a predetermined number of memory blocks of the memory module that is monitored. It is further determined whether the word line has been accessed while the memory block is being monitored. If it is determined that the word line has not been accessed, the word line is refreshed. If it is determined that the word line has been accessed, the refreshing operation is skipped for that word line.
Abstract:
An improved a programmable electrical fuse device utilizing MOS oxide breakdown is described herein. The fuse device comprises a programmable MOS device having a first gate width, a reference MOS device having a second gate width that is substantially less than the first gate width, and a sense amplifier operable to detect a difference in current and generate a corresponding logical signal. According to one embodiment, the fuse device can be programmed only once to invert its logical state and thereby provide a changeable logical signal. This is done by applying an overvoltage signal to the programmable MOS device so that its oxide layer breaks down. Since the programmable MOS device and the reference MOS device are on opposite sides of the sense amplifier, an opposite logical signal is generated by shorting-out the programmable MOS device. According to another embodiment, the fuse device can be programmed and erased multiple times by breaking down oxide layers in MOS devices that are alternating sides of a sense amplifier.
Abstract:
Systems for providing a temperature detecting circuit includes seven transistors and six resistors. In a preferred embodiment, one of the seven transistors is configured as an enabling element and the others form two comparators. The six resistors form three voltage dividers with output varying based upon changing temperature. Two comparators are included that sense the difference between the outputs of two of the voltage dividers, and generate a corresponding 2-bit detection signal by which the refresh period is determined. Other systems and methods are also provided.
Abstract:
A biochemical detection unit for detecting a sample and a biochemical device having the biochemical detection unit and a releasing unit are provided. The biochemical detection unit includes a photoconductor plate, a receptor, and a resistance sensing component. The receptor specifically binds to the sample so that the illumination projected on the photoconductor plate will change to vary the resistance value of the photoconductor of the photoconductor plate.
Abstract:
The invention provides an optical touch apparatus. The optical touch apparatus includes at least one optical path unit and at least one light sensing unit. The at least one optical path unit is located on a first side of a display unit of the optical touch apparatus and used to receive at least one directional incident light, the at least one directional incident light is focused to form an image in an imaging region through at least one refraction in the at least one optical path unit. The at least one light sensing unit is located at a relative position of the at least one optical path unit, and used to generate a sensing result according to the image in the imaging region.
Abstract:
An optical touch apparatus includes a light source emitting module, an optical module, a light sensing module, and a processing module. The optical module and the light sensing module are set on a first side and a second side of a surface of the optical touch apparatus. The light source emitting module sequentially emits a first light source and a second light source. A plurality of scanning lights of the second light source is uniformly distributed above the surface. The optical module receives the first light source and uniformly emits a plurality of lights. The light sensing module generates a first sensing result and a second sensing result based on the conditions of receiving the lights and scanning lights respectively. The processing module determines at least one touch point location corresponding to at least one object on the surface based on the first sensing result and the second sensing result.
Abstract:
An optical touch apparatus is disclosed. The optical touch apparatus comprises at least one light sensing module and a processing module. The at least one light sensing module is set at a first side of a surface of the optical touch apparatus, and used for receiving at least one light and generating a sensing result according to the condition of receiving the at least one light. The sensing result relates to whether the at least one light is blocked by at least one object above the surface and also relates to a comparing result between the at least one object and a reference region. The reference region is set at an opposite second side of the surface. The processing module determines at least one touch point position corresponding to the at least one object on the surface according to the sensing result.
Abstract:
An optical coherence tomography apparatus includes a light source, a light coupling module, and an optical path difference generating module. The light source emits a coherent light. The light coupling module divides the coherent light into a first incident light and a second incident light. The first incident light is emitted to an item to be inspected and a first reflected light is generated. The second incident light is emitted to the optical path difference generating module, a second reflected light is generated according to the second incident light by the optical path difference generating module through changing the transparent/reflection properties of at least one optical devices of the optical path difference generating module, so that there is a optical path difference between the first reflected light and the second reflected light.
Abstract:
A fundus optical image device includes a light source, a first optical element set and a second optical element set. The light emitted from the light source reaches the fundus through the first optical element set. The second optical element set has at least one curvature-adjustable lens. The light emitted from the light source is reflected by the fundus and then passes through the curvature-adjustable lens to present an image of the fundus.
Abstract:
A flip-flop circuit includes a precharge circuit that outputs a charge signal high when a received clock signal is LOW. A delay clock input circuit generates a delayed clock input controlled signal with the same value as an input signal when the clock signal is HIGH. A charge keeper circuit, upon receiving the charge signal and the delayed clock input controlled signal, generates a charge keeping signal, which equals the charged signal when the clock signal is LOW and equals the delayed clock input controlled signal when the clock signal is HIGH. A separator circuit can receive the charge keeping signal and clock signal and generate an inverted charge keeping signal. A storage circuit is configured to receive the inverted charge keeping signal, a present state signal, and inverted present state signal, and to generate a present state signal and an inverted present state signal.