Abstract:
A spark plug includes a metallic shell, an insulator, a center electrode body, a ground electrode body, and a ground electrode tip. In one embodiment, the ground electrode tip includes a non-precious metal piece and a precious metal piece attached to each other. The non-precious metal piece has a side surface attached to a free end surface of the ground electrode body.
Abstract:
A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
Abstract:
A power amplifier circuit that has an inductor and capacitor connected to one end of the output winding of an RF transformer. The other end of the output winding is connected to a current sensor that in turn is connected to ground. The transformer has two primary windings. Both primary windings have one end connected to a voltage supply. The other end of each primary winding is attached to a switch. All three windings are wound around a core. Current flowing from the DC voltage supply to the switches causes a magnetic flux in the core. A voltage is generated on the secondary winding current sensor by the current that flows through the igniter. This voltage is fed back to the switches, controlling on and off timing. Voltage is provided to the igniter or pulled from the igniter when the current traveling into or from the igniter is at zero.
Abstract:
A corona ignition system including a corona igniter, switches, and a programmable controller capable of rapidly adjusting to changes in resonant frequency is provided. Energy at a drive frequency and an output current is provided to the corona igniter. Switches provide energy to the corona igniter at the drive frequency and are activated at different times. The controller obtains the output current provided to the corona igniter, typically once every half cycle, and activates the first switch a predetermined amount of time after a first zero crossing of the output current, wherein the first zero crossing is a zero crossing of the most recent full cycle of the output current. The second switch is activated a predetermined amount of time after a second zero crossing occurring after the first zero crossing. The delay of the system is accounted for by the controller, rather than other components.
Abstract:
A power amplifier circuit for a corona ignition system is provided. The circuit includes an inductor and capacitor connected to one end of a secondary winding of an RF transformer. The other end of the secondary winding is connected to a current sensor which is connected to ground. The transformer also has a primary winding with one end connected to a voltage supply and the other end attached to a pair of switches. The windings are wound around a core. Current flowing from the DC voltage supply to the switches causes a magnetic flux in the core. A voltage is generated on the secondary winding by the current that flows through the igniter. This voltage is fed back to the switches, controlling on and off timing. Voltage is provided to the corona igniter or pulled from the igniter when the current traveling into or from the igniter is at zero.
Abstract:
A spark plug and a method of manufacturing the same, where the spark plug has a metal shell, an insulator, a center electrode, a ground electrode, and a gasket located over a threaded portion of the shell and used to seal the spark plug against a cylinder head. Once the gasket is attached on the spark plug, it is shrunk to become a post-formed gasket with an inner diameter that prevents the post-formed gasket from slipping over a threaded portion of the metallic shell. This process may be carried out with a collet type machine that produces a post-formed gasket that is flat and has a substantially uniform thickness, which can improve the sealability of the gasket. This may be important when the spark plug is installed in a cylinder head made from a lost foam casting process or other process that creates a somewhat porous sealing surface.
Abstract:
A spark plug suppressor and a method of producing a spark plug suppressor from a suppressor precursor liquid that may be cured at a temperature below 300° C. The spark plug suppressor may include particles or grains dispersed in a matrix of electrically conducting material, electrically semiconducting material, or electrically non-conducting material. The suppressor may include a conductive glass seal component and a resistive suppressor component. The resistive suppressor component may be at least partially embedded in the glass seal component, and the glass seal component may seal a center electrode of the spark plug, a terminal of the spark plug, or both the center electrode and the terminal.
Abstract:
An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
Abstract:
A welding system for welding small precious metal firing tips to spark plug electrodes, such as ground and/or center electrodes. According to one embodiment, the welding system includes a firing tip storage assembly and a firing tip welding assembly, where the firing tip storage assembly uses pressurized gas introduced at the bottom of a part container to float or lift the firing tips so that the firing tip welding assembly can more easily acquire them with a vacuum-driven nozzle that also doubles as a welding electrode. The firing tip welding assembly is mounted to a robotic apparatus that can index or move the firing tip welding assembly between the firing tip storage assembly, a welding station and/or any other suitable positions.
Abstract:
A corona comprises a central electrode surrounded by an insulator, which is surrounded by a conductive component. The conductive component includes a shell and an intermediate part both formed of an electrically conductive material. The intermediate part is a layer of metal which brazes the insulator to the shell. An outer surface of the insulator presents a lower ledge, and the layer of metal can be applied to the insulator above the lower ledge prior to or after inserting the insulator into the shell. The conductive inner diameter is less than an insulator outer diameter directly below the lower ledge such the insulator thickness increases toward the electrode firing end. The insulator outer diameter is also typically less than the shell inner diameter so that the corona igniter can be forward-assembled.