Abstract:
The addendum tooth profile of the inner teeth and outer teeth of a strain wave gearing is stipulated by a first and second similar curve obtained from the curve segment from an inflection point to a low point in a movement trajectory when the meshing of both teeth is approximated by rack meshing. The addendum tooth profile of the inner teeth is stipulated by a curve generated at the inner teeth in the process of the addendum profile of the outer teeth moving from the inflection point to the apex of the movement trajectory. The addendum tooth profile of the outer teeth is stipulated by a curve generated at the outer teeth when the addendum profile of the inner teeth moves from the inflection point to the apex. The addendum profile of the outer teeth makes double contact with the addendum profile and dedendum profile of the inner teeth.
Abstract:
A planetary reduction gear device has first and second planetary gears meshed with a sun gear and an internal at different locations in a direction of an axis line; and a carrier assembly for supporting the first and second planetary gears. The carrier assembly has a first planetary carrier for supporting the first planetary gears and a second planetary carrier for supporting the second planetary gears. The first and second planetary carriers are fixed coaxially with each other in the direction of the axis line so as to rotate integrally. A planetary reduction gear device having a large torque capacity can be obtained.
Abstract:
A wave generator of a strain wave gearing has a plug, a wave generator bearing mounted to an outer peripheral surface of the plug, an input shaft protruding from the center of the plug to a first side running along a center axis, and a bearing arrangement on which a support bearing supporting the input shaft is arranged. Relative to an outer ring end surface of the wave generator bearing that faces the first side, a center-side plug end surface of a plug end surface facing the same direction is in a position withdrawn from the first side toward the opposite direction. The bearing arrangement is provided between the center-side plug end surface and the outer ring end surface encircling the input shaft. The input shaft can be fitted within the width dimension of the wave generator, and a strain wave gearing having a short axial length can be achieved.
Abstract:
A planetary gear reducer has a planetary carrier supported by an input-side main bearing and an output-side main bearing. An angular contact ball bearing or a deep groove ball bearing which requires less installation space and is inexpensive is used for the input-side main bearing. A tapered roller bearing having a large capacity is used for the output-side main bearing. A compact, flat and inexpensive planetary gear reducer can be realized in comparison with a case in which the both main bearings are tapered roller bearings.
Abstract:
In this wave generator for a strain wave gearing, a plug thereof is configured from a plurality of split plug segments that are joined in the axial direction. Wave gearings are installed to the split outer peripheral surfaces of the split plug segments by press fitting, and thereafter the split plug segments can be joined in the axial direction. It is possible to easily produce the wave generator in which a plurality of wave bearings are press fitted, in parallel arrangement, on the non-circular outer peripheral surface.
Abstract:
A flat strain wave gearing (1) has a mechanism for preventing a flexible externally toothed gear (4) from moving in the direction of the device center axis (1a) with respect to a rigid internally toothed gears (2, 3). The mechanism has an inner-peripheral groove (11) formed on inner teeth (3a) of the internally toothed gear (3), an outer-peripheral groove (12) formed on outer teeth (4a) of the externally toothed gear (4), and a flexible ring (13) mounted between the inner-peripheral groove (11) and the outer-peripheral groove (12). The ring (13) is engageable with groove inner-peripheral surfaces (11a, 11b, 12a, 12b), from the direction of the device center axis (1a), at meshing positions of the both gears (2, 4).
Abstract:
A fastening friction plate is wedged between the fastening surfaces of two fastening members in order to increase the fastening force between them. The fastening friction plate has a friction plate main body of a fixed thickness, and engaging protuberances having an approximately truncated cone shape formed on the both surfaces of the friction plate main body at a fixed pitch. The friction plate main body and the engaging protuberances are integrally formed by photo-etching into the both surfaces of a steel plate material having a fixed thickness. The hardness of the fastening friction plate is equal to or greater than that of the fastening surfaces of the fastening members.
Abstract:
A wave generator of a strain wave gearing has a rigid plug and a needle roller bearing mounted on the plug external peripheral surface. The plug external peripheral surface has a retainer engaging part for engaging with a retainer that would move in an axis line direction and for restricting the movement thereof along the axis line direction. The retainer has an outer ring engaging part for engaging with an outer ring that would move in the axis line direction and for restricting the movement thereof along the axis line direction. The movements of the retainer and the outer ring can be restricted without providing a separate member. A wave generator of a strain way gearing can be realized, which is provided with a roller bearing capable of restricting the movement of the outer ring with a simple structure.
Abstract:
A first shaft end of a hollow shaft of a hollow strain wave gearing is supported by a first support bearing with a collar interposed therebetween which is mounted to the outer-circumferential surface of the first shaft end. A second shaft end on the other end of the hollow shaft is supported by a second support bearing. A wave plug of a wave generator is integrally formed with the hollow shaft, and a wave bearing is mounted on the elliptical outer-circumferential surface thereof from the first-shaft-end side. It is possible to use a first support bearing having an inner diameter larger than the outer diameter of the first shaft end as the first support bearing for supporting the first shaft end.
Abstract:
The addendum tooth profile of the inner teeth and outer teeth of a strain wave gearing is stipulated by a first and second similar curve obtained from the curve segment from an inflection point to a low point in a movement trajectory when the meshing of both teeth is approximated by rack meshing. The addendum tooth profile of the inner teeth is stipulated by a curve generated at the inner teeth in the process of the addendum profile of the outer teeth moving from the inflection point to the apex of the movement trajectory. The addendum tooth profile of the outer teeth is stipulated by a curve generated at the outer teeth when the addendum profile of the inner teeth moves from the inflection point to the apex. The addendum profile of the outer teeth makes double contact with the addendum profile and dedendum profile of the inner teeth.