Abstract:
An organic electroluminescence display device comprising a light-emitting device formed on a lower insulating substrate, an upper substrate spaced apart from the lower insulating substrate, and a sealant between the lower insulating substrate and the upper substrate and covering the light-emitting device. The upper substrate comprises a moisture absorbing material.
Abstract:
An organic electroluminescence (EL) display device having a portion emitting light toward a side of a substrate and a portion emitting light toward another side of the substrate. The organic EL display device includes a substrate, a first organic light emitting unit formed on the substrate, and a second organic light emitting unit formed on the substrate and adjacent to the first organic light emitting unit. The first organic light emitting unit and the second organic light emitting unit emit light in different directions.
Abstract:
A pixel driving circuit for a display device in which a plurality of gate lines and data lines are arranged. The pixel circuit is disposed at an intersection between the gate lines and data lines, and includes at least two light emitting elements for emitting certain colors within a certain section; an active device commonly connected to the at least two light emitting elements to drive the at least two light emitting elements; and an power source control part connected to the active device to transmit driving control signals for the at least two light emitting elements to the active device. The active device sequentially drives the at least two light emitting elements in the certain section per a certain period of time in response to the power source signals transmitted through the power source control part, and the at least two light emitting elements are sequentially emitted.
Abstract:
A blue phosphorescent compound and an organic electroluminescent device using the same are provided. The blue phosphorescent compound can emit deep blue light and can improve color purity and reduce power consumption when used in an organic electroluminescent device.
Abstract:
An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, a phosphorescent emission layer between the first electrode and the second electrode, and an electron transport layer between the phosphorescent emission layer and the second electrode. The phosphorescent emission layer includes a compound represented by one of Formulae 1a to 1c, and the electron transport layer includes a metal-containing compound and a compound represented by Formula 2.
Abstract:
A carbazole-based compound of Formula 1 and an organic light-emitting diode including the same. The carbazole-based compound represented by Formula 1 has a triarylamine structure, wherein at least one of R1 to R5 is essentially a nitrogen-containing group. Thus, the carbazole-based compound has high glass transition temperature and/or high melting point, and is stable during electron injection, and when interposed between a pair of electrodes (anode and cathode) of an organic light-emitting diode, the carbazole-based compound may have excellent thermal resistance against Joule's heat generated in organic layers between the pair of electrodes, between the organic layers, or between the organic layer and the electrode during an operation of the organic light-emitting diode.
Abstract:
An organic light-emitting diode including: a first mixed layer between an emission layer and a first electrode and including first and second compounds; a second mixed layer between the emission layer and the first mixed layer and including third and fourth compounds; a first charge generation layer between the first mixed layer and the first electrode and including the first and second compounds and a first charge generation material; a second charge generation layer between the first mixed layer and the second mixed layer and including the third and fourth compounds and a second charge generation material; and a buffer layer between the emission layer and the second mixed layer, the first and the third compounds are each independently a compound represented by Formula 1 below, and the second compound and fourth compounds are each independently a compound represented by Formula 2 below:
Abstract:
An organic light-emitting diode including: a first mixed layer between an emission layer and a first electrode and including first and second compounds; a second mixed layer between the emission layer and the first mixed layer and including third and fourth compounds; a first charge generation layer between the first mixed layer and the first electrode and including the first and second compounds and a first charge generation material; a second charge generation layer between the first mixed layer and the second mixed layer and including the third and fourth compounds and a second charge generation material; and a buffer layer between the emission layer and the second mixed layer, the first and the third compounds are each independently a compound represented by Formula 1 below, and the second compound and fourth compounds are each independently a compound represented by Formula 2 below:
Abstract:
A compound represented by Formula 1 below: (R1)a—CB—[Ar]n—CB—(R2)b wherein CB denotes carborane, Ar is a substituted or unsubstituted phenylene group, and a detailed description of R1, R2, a, b, and n is provided in the detailed description. An organic light-emitting diode including an organic layer including the compound has high luminous efficiency.
Abstract:
An organic light-emitting device including: a substrate; a first electrode; a second electrode; an emission layer between the first electrode and the second electrode; and an electron transport layer between the emission layer and the second electrode, wherein the emission layer includes a blue emission layer, the electron transport layer includes a unit that includes a first single layer including a first material, a first mixed layer on the first single layer and including the first material and a second material, a second single layer on the first mixed layer and including the second material, a second mixed layer on the second single layer and including the first and second materials, and a third single layer on the second mixed layer and including the first material, wherein the first mixed layer has a thickness that is larger than that of the second mixed layer.