Abstract:
A transmission electron microscope micro-grid includes a support ring and a sheet-shaped carbon nanotube structure. The support ring has a through hole defined therein. The sheet-shaped carbon nanotube structure has a peripheral edge secured on the support ring and a central area suspended above the through hole. The sheet-shaped carbon nanotube structure includes at least one linear carbon nanotube structure or at least one carbon nanotube film.
Abstract:
A method for manufacturing a transmission electron microscope (TEM) micro-grid is provided. A support ring and a sheet-shaped carbon nanotube structure precursor are first provided. The sheet-shaped carbon nanotube structure precursor is then disposed on the support ring. The sheet-shaped carbon nanotube structure precursor is cut to form a sheet-shaped carbon nanotube structure in desired shape. The sheet-shaped carbon nanotube structure is secured on the support ring.
Abstract:
A display device includes a touch panel. The touch panel includes at least one transparent conductive layer. The at least one transparent conductive layer is a carbon nanotube layer including a plurality of carbon nanotubes, and the plurality of carbon nanotubes are substantially arranged along the same axis, and the density of the carbon nanotube layer is not constant.
Abstract:
A transmission electron microscope (TEM) micro-grid includes a pure carbon grid having a plurality of holes defined therein and at least one carbon nanotube film covering the holes. A method for manufacturing a TEM micro-grid includes following steps. A pure carbon grid precursor and at least one carbon nanotube film are first provided. The at least one carbon nanotube film is disposed on a surface of the pure carbon grid precursor. The pure carbon grid precursor and the at least one carbon nanotube film are then cut to form the TEM micro-grid in desired shape.
Abstract:
A defrost window includes a transparent substrate, a carbon nanotube film, a first electrode, a second electrode and a protective layer. The transparent substrate has a top surface. The carbon nanotube film is disposed on the top surface of the transparent substrate. The first electrode and the second electrode electrically connect to the carbon nanotube film and space from each other. The protective layer covers the carbon nanotube film.
Abstract:
A method for making a carbon nanotube film includes fabricating a carbon nanotube array grown on a substrate. A drawing tool and a supporting member, having a surface carrying static charges, are provided. The static charges of the surface of the supporting member are neutralized. A plurality of carbon nanotubes in the carbon nanotube array is contacted and chosen by the drawing tool. The drawing tool is then moved along a direction away from the carbon nanotube array, thereby pulling out a carbon nanotube film. The carbon nanotube film is adhered the surface of the supporting member.
Abstract:
An amplifier circuit for thermoacoustic device includes a peak hold circuit, an add-subtract circuit, and a power amplifier. The peak hold circuit is configured to accept an audio signal and output a peak hold signal. The add-subtract circuit is configured to accept the audio signal and the peak hold signal, and output a modulated signal after a comparison operation of the audio signal and the peak hold signal. The power amplifier is configured to accept the modulated signal, amplify the modulated signal, and output an amplified voltage signal.