摘要:
Systems and methodologies are described that provide techniques for generating and utilizing reverse link feedback for interference management in a wireless communication system. Other Sector Interference (OSI) indicators are transmitted from an interfering access point to an access terminal. At the access terminal, an appropriate delta value(s) is combined with the received OSI indicators. The combined information is transmitted to the access point in a feedback so the serving sector access point can analyze the amount of interference. Based on the provided feedback from the terminal, the serving sector access point can assign resources for use by the terminal in communication with the serving sector.
摘要:
Systems and methods that facilitate management of interference and communication resources are provided. A differential approach is devised in which other-sector interference (OSI) and communication resources are managed by adjusting an offset (delta) value associated with the resources in response to receiving an indication of other-sector interference. An OSI indication can be issued based on a short and a long time scale, and effective interference metrics over time-frequency resources. The adjusted delta value is communicated to a serving access point, which reassigns communication resources in order to mitigate other-sector interference.
摘要:
Apparatuses and methodologies are described that enhance performance in a wireless communication system using beamforming transmissions. According to one aspect, the channel quality is monitored. Channel quality indicators can be used to select a scheduling technique, such as space division multiplexing (SDM), multiple-input multiple output (MIMO) transmission and opportunistic beamforming for one or more user devices. In addition, the CQI can be used to determine the appropriate beam assignment or to update the beam pattern.
摘要:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
摘要:
Systems and methodologies are described that provide half-duplex communication in a frequency division duplex (FDD) system. Communications in an FDD system may be divided into half-duplex interlaces, wherein a terminal may receive at one time period and transmit at another time period. An access network in an FDD system may then utilize half-duplex communication to communicate with an access terminal that is not capable of transmitting and receiving simultaneously by using a half-duplex interlace. Further, an access network may also utilize full-duplex communication to communicate with an access terminal that is capable of transmitting and receiving simultaneously.
摘要:
Systems and methodologies are described that provide half-duplex communication in a frequency division duplex (FDD) system. Communications in an FDD system may be divided into half-duplex interlaces, wherein a terminal may receive at one time period and transmit at another time period. An access network in an FDD system may then utilize half-duplex communication to communicate with an access terminal that is not capable of transmitting and receiving simultaneously by using a half-duplex interlace. Further, an access network may also utilize full-duplex communication to communicate with an access terminal that is capable of transmitting and receiving simultaneously.
摘要:
Techniques for transmitting and detecting for overhead channels and signals in a wireless network are described. In an aspect, a base station may blank (i.e., not transmit) at least one overhead transmission on certain resources in order to detect for the at least one overhead transmission of another base station. In one design, the base station may (i) send the overhead transmission(s) on a first subset of designated resources and (ii) blank the overhead transmission(s) on a second subset of the designated resources. The designated resources may be resources on which the overhead transmission(s) are sent by macro base stations. The base station may detect for the overhead transmission(s) from at least one other base station on the second subset of the designated resources. In another aspect, the base station may transmit the overhead transmission(s) on additional resources different from the designated resources.
摘要:
Systems and methodologies are described that facilitate blanking on portions of bandwidth utilized by communicating devices that are dominantly interfered by a disparate device in wireless communications networks. The portions of bandwidth can relate to critical data, such as control data, and one or more of the communicating devices can request that the dominantly interfering device blank on one or more of the portions. The communicating devices can subsequently transmit data over the blanked portions free of the dominant interference. Additionally, the dominantly interfering device can request reciprocal blanking from the one or more communicating devices.
摘要:
A novel apparatus and method for encoding data using a low density parity check (LDPC) code capable of representation by a bipartite graph are provided. To encode the data, an accumulate chain of a plurality of low degree variable nodes may be generated. The accumulate chain may then be closed to form a loop twice, once using a low degree variable nodes and once using a higher degree variable which is higher than the low degree variable node, where the higher degree variable node comprises a non-loop-closing edge. In one embodiment, the plurality of low degree variable nodes may have the same permutation on each edge.
摘要:
Pilot symbols transmitted from different sectors of a same base station are multiplied with a same cell specific scrambling code and a first code having low cross correlation and second codes having low cross correlation. The second code is constant over the length of the first code, but may vary for repetitions of the first code.