Abstract:
Systems and methods are provided for selectively performing image statistics processing based at least partly on whether a pixel has been clipped. In one example, an image signal processor may include statistics collection logic. The statistics collection logic may include statistics image processing logic and a statistics core. The statistics image processing logic may perform initial image processing on image pixels, at least occasionally causing some of the image pixels to become clipped. The statistics core may obtain image statistics from the image pixels. The statistics core may obtain at least one of the image statistics using only pixels that have not been clipped and excluding pixels that have been clipped.
Abstract:
An input rescale module that performs cross-color correlated downscaling of sensor data in the horizontal and vertical dimensions. The module may perform a first-pass demosaic of sensor data, apply horizontal and vertical scalers to resample and downsize the data in the horizontal and vertical dimensions, and then remosaic the data to provide horizontally and vertically downscaled sensor data as output for additional image processing. The module may, for example, act as a front end scaler for an image signal processor (ISP). The demosaic performed by the module may be a relatively simple demosaic, for example a demosaic function that works on 3×3 blocks of pixels. The front end of module may receive and process sensor data at two pixels per clock (ppc); the horizontal filter component reduces the sensor data down to one ppc for downstream components of the input rescale module and for the ISP pipeline.
Abstract:
Image tone adjustment using local tone curve computation may be utilized to adjust luminance ranges for images. Image tone adjustment using local tone curve computation may reduce the overall contrast of an image, while maintaining local contrast in smaller areas, such as in images capturing brightly lit scenes where the difference in intensity between brightest and darkest areas is large. A desired brightness representation of the image may be generated including target luminance values for corresponding blocks of the image. For each block, one or more tone adjustment values may be computed, that when jointly applied to the respective histograms for the block and neighboring blocks results in the luminance values that match corresponding target values. The tone adjustment values may be determined by solving an under-constrained optimization problem such that optimization constraints are minimized. The image may then be adjusted according to the computed tone adjustment values.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
Image tone adjustment using local tone curve computation may be utilized to adjust luminance ranges for images. Image tone adjustment using local tone curve computation may reduce the overall contrast of an image, while maintaining local contrast in smaller areas, such as in images capturing brightly lit scenes where the difference in intensity between brightest and darkest areas is large. A desired brightness representation of the image may be generated including target luminance values for corresponding blocks of the image. For each block, one or more tone adjustment values may be computed, that when jointly applied to the respective histograms for the block and neighboring blocks results in the luminance values that match corresponding target values. The tone adjustment values may be determined by solving an under-constrained optimization problem such that optimization constraints are minimized. The image may then be adjusted according to the computed tone adjustment values.