Abstract:
A reflective type touch-sensing display panel including a front substrate, scan lines, data lines, pixel structures, photo-sensors, readout devices, a rear substrate and a reflective display medium is provided. The front substrate has an inner surface. The scan lines and the data lines are on the inner surface of the front substrate and intersected to each other. The pixel structures are disposed on the inner surface of the front substrate, and each pixel structure is electrically connected to one of the scan lines and one of the data lines correspondingly. The photo-sensors are disposed on the inner surface of the front substrate. Each readout device is electrically connected to one of the photo-sensor correspondingly. The rear substrate is disposed opposite to the front substrate. The reflective display medium is sealed between the front substrate and the rear substrate.
Abstract:
A pixel structure formed on a substrate and electrically connected with a scan line and a data line, and including a semiconductor pattern and a pixel electrode is provided. The semiconductor pattern includes at least two channel areas, at least one doping area, a source area, and a drain area. The channel areas are located below the scan line and have different aspect ratios. The doping area is connected between the channel areas. The pixel electrode electrically connects the drain area, the source area is connected between one of the channel areas and the data line, and the drain area is connected between the other channel area and the pixel electrode. The scan line has different widths above different channel areas, and a length of each channel area is substantially equal to the width of the scan line.
Abstract:
A liquid crystal display device uses a first quarter-wave retardation film and a hybrid aligned nematic film to reduce light leakage in dark state for reaching high contrast ratio, and uses multiple-gamma IC to provide different gamma-curve signals for pixels of different colors to solve color shift problem. In addition, the liquid crystal display device may use a second quarter-wave retardation film to reduce light leakage when viewed in a wide angle so as to further provide higher contrast ratio.
Abstract:
A pixel structure formed on a substrate and electrically connected with a scan line and a data line, and including a semiconductor pattern and a pixel electrode is provided. The semiconductor pattern includes at least two channel areas, at least one doping area, a source area, and a drain area. The channel areas are located below the scan line and have different aspect ratios. The doping area is connected between the channel areas. The pixel electrode electrically connects the drain area, the source area is connected between one of the channel areas and the data line, and the drain area is connected between the other channel area and the pixel electrode. The scan line has different widths above different channel areas, and a length of each channel area is substantially equal to the width of the scan line.
Abstract:
A liquid crystal display (LCD) panel and a manufacturing method thereof are provided. The manufacturing method includes providing a panel including a first substrate having scan lines, data lines, an active device electrically connecting the scan and data lines, and a pixel electrode electrically connecting the active device, a second substrate having an opposite electrode, and a liquid crystal (LC) layer disposed between the first and the second substrates and having a monomer material. A first curing voltage and a second curing voltage are applied to the scan and data lines, respectively. The second curing voltage is thus transmitted to the pixel electrode. The first curing voltage is higher than an absolute value of the second curing voltage. The monomer material is polymerized to form a first polymer stabilized alignment (PSA) layer between the LC layer and the first substrate and a second PSA layer between the LC layer and the second substrate. The electrical field is then removed.
Abstract:
A transreflective LCD has a TFT array plate, a color filter plate and a liquid crystal therebetween. A trench is in the overcoat layer of the TFT array plate and/or the color filter plate. The trench can be located in a transmission area or in a reflective area of a pixel. A conformal transparent electrode is located therein, and an overcoat material is filled up in the trench.
Abstract:
A pixel structure formed on a substrate and electrically connected with a scan line and a data line, and including a semiconductor pattern and a pixel electrode is provided. The semiconductor pattern includes at least two channel areas, at least one doping area, a source area, and a drain area. The channel areas are located below the scan line and have different aspect ratios. The doping area is connected between the channel areas. The pixel electrode electrically connects the drain area, the source area is connected between one of the channel areas and the data line, and the drain area is connected between the other channel area and the pixel electrode. The scan line has different widths above different channel areas, and a length of each channel area is substantially equal to the width of the scan line.
Abstract:
A display panel and a color filter substrate thereof are provided. The display panel includes a first substrate, an alignment structure set, a second substrate, a pixel electrode, and a liquid crystal layer. The alignment structure set includes a first and a second alignment units disposed on the upper electrode. The first alignment unit is different from the second alignment unit. The pixel electrode is formed on the second substrate and includes a first electrode and a second lower electrode opposite to the first and second alignment units, respectively. A color filter may be disposed between the first substrate and the alignment structure layer to form a color filter substrate.
Abstract:
An optical film for use in backlight module is provided. The optical provides quality luminance of a liquid crystal display (LCD) apparatus. The optical film assembly comprises a substrate with a polarization direction, in which the substrate has a first surface and a second surface opposing thereto. A first prismatic structure is formed on the first surface. The polarization direction of the substrate defines the first angle θ1 with respect to the configured direction of the first prismatic structure, in which 0°
Abstract:
A method of driving an electrophoretic display is set forth for avoiding image-edge residual while sequentially displaying a first frame and a second frame. During the time of displaying the first frame, set a common voltage to be a first voltage, apply a second voltage different from the first voltage to a first pixel for writing a first data signal into the first pixel, and apply the first voltage to a second pixel adjacent to the first pixel for retaining a second data signal of the second pixel, which is different from the first data signal. During the time of displaying the second frame, set the common voltage to be the second voltage, apply the first voltage to the first pixel for writing the second data signal into the first pixel, and apply the first voltage to the second pixel for retaining the second data signal of the second pixel.