Abstract:
An airplane is provided. The airplane includes a first medium at a first pressure, a second medium at a second pressure, a third medium at a third pressure; and an air conditioning system. The air conditioning system includes a compressor, a first heat exchanger configured to transfer heat from the first medium to the third medium, a second heat exchanger configured to reject heat from the first medium, a third heat exchanger configured to reject heat from the second medium, a first turbine configured to receive the first medium, and a second turbine configured to receive the second medium.
Abstract:
An airplane is provided. The airplane includes a compressing device. The compressing device includes a turbine with a first inlet and a second inlet. The turbine provides energy by expanding mediums. The first inlet is configured to receive a first medium of the mediums. The second inlet is configured to receive a second medium of the mediums. The compressing device includes a compressor and a motor. The compressor receives a first energy derived from the first and second mediums being expanded across the turbine during a first mode of the compressing device, receives a second energy derived from the first medium being expanded across the turbine during a second mode of the compressing device, and compresses the second medium in accordance with the first mode or the second mode. The motor provides a supplementary energy to the compressor
Abstract:
An airplane is provided. The airplane includes a compressing device including a turbine and a compressor. The turbine includes first and second inlets and provides energy by expanding one or more mediums. The first inlet is receives a first medium of the one or more mediums. The second inlet receives a second medium of the one or more mediums. The compressor receives a first energy derived from the first and second mediums being expanded across the turbine during a first mode of the compressing device, receives a second energy derived from the first medium being expanded across the turbine during a second mode of the compressing device, and compresses the second medium in accordance with the first mode or the second mode.
Abstract:
A system is provided. The system includes a first inlet providing a medium from a source; a compressing device in communication with the first inlet; and at least one heat exchanger. The compressing device includes a compressor that receives the medium and a turbine downstream of the compressor. The system is powered by mechanical power from the medium and by electrical power through a motor. The motor input power is less than or equal to 0.5 kilowatt per pounds per minute of the medium compressed.
Abstract:
A system is provided. The system includes an air conditioning pack; a first medium; a second medium; a first mixing point located outside the air conditioning pack and configured to mix the first medium with the second medium; and a second mixing point located inside the air conditioning pack and configured to mix the first medium with the second medium.
Abstract:
An environmental air conditioning system is described for conditioning compressed air for supply as conditioned air. The system includes an airflow path to which the compressed air for ultimate distribution as conditioned air (i.e., airflow path compressed air) is supplied. Then airflow path has various components of an air cycle system, and also includes a power turbine outside of the air cycle that receives compressed air and discharges it as exhaust. The power turbine transfers power to a compressor in the air cycle system.
Abstract:
A heat exchanging valve arrangement includes, a manifold defining a chamber, a first passageway, a second passageway, a third passageway, and a fourth passageway, and a member movable relative to the manifold configured to define fluidic communication between the first passageway and the second passageway when in a first position and between the first passageway and the third passageway when in a second position, fluid is flowable into the chamber through the fourth passageway such that fluid is exposed to surfaces of the member regardless of whether the member is in the first position or the second position.
Abstract:
An environmental air conditioning system is described for conditioning compressed air for supply as conditioned air. The system includes an airflow path to which the compressed air for ultimate distribution as conditioned air (i.e., airflow path compressed air) is supplied. Then airflow path has various components of an air cycle system, and also includes a power turbine outside of the air cycle that receives compressed air and discharges it as exhaust. The power turbine transfers power to a compressor in the air cycle system.
Abstract:
An environmental control system comprising that utilizes recirculation air. The environmental control system includes an inlet configured to supply bleed air at a first energy from a source to the environmental control system, where the environmental control system supplies the bleed air at a second energy to a chamber. The environmental control system also includes an air cycle machine comprising a compressor and a turbine, where the air cycle machine receives the recirculation air from the chamber and the recirculation air is bleed air at a third energy flowing from the chamber to the air cycle machine.
Abstract:
A hybrid power distribution system for an aircraft generates hydraulic power from one of a plurality of power sources based on which power source provides energy most efficiently. Power sources includes an electric power distribution bus that distributes electrical energy onboard the aircraft, a pneumatic distribution channel that distributes pneumatic energy onboard the aircraft, and mechanical power provided by one or more engines associated with the aircraft.