Abstract:
A sheet finisher of the invention includes a saddle stitch unit configured to stitch a center of a sheet bundle in which printed sheets are bundled, a fold unit configured to fold the center stitched by the saddle stitch unit and to form a fold line, a fold reinforcing unit that includes a reinforce roller, moves the reinforce roller along a direction of the fold line while applying pressure by the reinforce roller to the fold line of the sheet bundle transported from the fold unit, and reinforces the fold line, and a control unit configured to transport the sheet bundle from the fold unit to the fold reinforcing unit and to control to stop the fold line of the sheet bundle at a position of the reinforce roller, and the control unit changes, according to a thickness of the sheet bundle, a transport distance from a specified position in the fold reinforcing unit to the position where the sheet bundle is stopped.
Abstract:
A sheet processing apparatus includes a hole punching section arranged orthogonally to a conveying path of a sheet, a moving mechanism which moves the hole punching section along a direction orthogonal to the conveying path, a detection unit which is arranged upstream from the hole punching section and which moves by being interlocked with the hole punching section and detects a lateral edge of the sheet conveyed thereto, and a control unit which controls the moving mechanism in accordance with the result of detection by the detection unit and varies the position of the hole punching section, thus controlling the punching processing position. The control unit causes the hole punching section to be moved in the direction to the retreat position along with the conveying of the sheet, causes the hole punching section to retreat by a prescribed quantity with reference to the result of detection by the detection unit, then causes the hole punching section to be moved in the opposite direction, and controls movement to the punching processing position in accordance with the result of detection by the detection unit.
Abstract:
According to one embodiment of the present invention, an erasing apparatus includes a used sheet stacking tray, an image erasing unit, a stand-by tray, a stand-by tray driving unit, and an erased sheet stacking tray. The used sheet stacking tray stacks thereon a used sheet on which an image is formed using an erasable colorant of which a color is erased by a predetermined heating process. The image erasing unit performs the heating for the used sheet which is received one by one from the used sheet stacking tray and discharges an erased sheet from which the image formed on the used sheet is erased. The stand-by tray has a mechanism which can be driven in a predetermined direction and places thereon the erased sheet discharged by the image erasing unit. The stand-by tray driving unit drives the stand-by tray and enables the erased sheet to free-drop. The erased sheet stacking tray is disposed under the stand-by tray and stacks thereon the erased sheet which free-drops from the stand-by tray.
Abstract:
There is provided a technique in which while the occurrence of a sheet jam is avoided, a pair of folding rollers for a folding process and a stapler for a staple process can be disposed to be close to each other, and a contribution can be made to the improvement of productivity. A staple unit is provided which performs a staple process to a bundle of sheets transported to a specified staple position in a sheet transport path, and staples the bundle of sheets by causing a press unit that presses a sheet surface of the bundle of sheets when the staple process is performed to cooperate with a reception unit that is disposed to face an inside of the sheet transport path through a hole provided in an inner wall of the sheet transport path and receives the bundle of sheets pressed by the press unit, and a vicinity of an upstream side edge of the reception unit in a sheet transport direction on the sheet transport path is covered by an elastic member supported by one of a wall surface of the sheet transport path and the reception unit.
Abstract:
An image forming apparatus includes: a first image forming unit which forms a first image on a first recording medium with a first material which is not thermally decolorized; a second image forming unit which forms a second image on a second recording medium with a second material which is thermally decolorized; a fixing unit which is on a common carrying path shared by the first recording medium and the second recording medium and fixes the first image to the first recording medium; and a control unit which controls the fixing unit so that the temperature of the second recording medium passing through the fixing unit becomes lower than a decolorizing temperature of the second material.
Abstract:
A sheet finisher of the invention includes a saddle stitch unit configured to stitch a center of a sheet bundle in which printed sheets are bundled, a fold unit configured to fold the center stitched by the saddle stitch unit and to form a fold line, and a fold reinforcing unit configured to reinforce the fold line formed by the fold unit, the fold reinforcing unit includes a roller unit that includes a reinforce roller with a structure for preventing an occurrence of a wrinkle, and moves along a direction of the fold line while applying pressure by the reinforce roller to the fold line of the sheet bundle transported from the fold unit, and a drive unit configured to move the roller unit along the direction of the fold line from a standby position located at a position separate from an end of the sheet bundle.
Abstract:
A sheet finisher of the invention includes a fold reinforcing unit that reinforces the fold line. The fold reinforcing unit includes a roller unit, a drive unit that has a single motor and moves the roller unit along the direction of the fold line from a standby position; and a nip unit. The nip unit includes a first nip plate and a second nip plate. The first nip plate and the second nip plate are opened in a thickness direction of the sheet bundle when the roller unit is located at the standby position, and are closed to nip the sheet bundle when the roller unit reinforces the fold line after the sheet bundle is transported to between the first and the second nip plate. The second nip plate is driven to be opened and closed in the thickness direction of the sheet bundle by the single motor.
Abstract:
A sheet stack loader includes a loading table to support a first folded sheet bundle, an elevator to lift the first folded sheet bundle from the loading table, and a conveyer to convey a second folded sheet bundle into a space between the loading table and the first folded sheet bundle, wherein the space is created by the elevator.
Abstract:
There is provided a technique in which while the occurrence of a sheet jam is avoided, a pair of folding rollers for a folding process and a stapler for a staple process can be disposed to be close to each other, and a contribution can be made to the improvement of productivity. A staple unit is provided which performs a staple process to a bundle of sheets transported to a specified staple position in a sheet transport path, and staples the bundle of sheets by causing a press unit that presses a sheet surface of the bundle of sheets when the staple process is performed to cooperate with a reception unit that is disposed to face an inside of the sheet transport path through a hole provided in an inner wall of the sheet transport path and receives the bundle of sheets pressed by the press unit, and a vicinity of an upstream side edge of the reception unit in a sheet transport direction on the sheet transport path is covered by an elastic member supported by one of a wall surface of the sheet transport path and the reception unit.
Abstract:
An image erasing apparatus includes an inlet receiving recording mediums sheet by sheet, a door key limiting the opening of a security box, an overlap feed sensor sensing the overlap feed of the recording mediums, plural size sensors sensing the sizes of the recording mediums, a movable tray on which the recording mediums input from the inlet are placed, a recovery box disposed below the movable tray to recover the recording mediums, and a recording medium carrying mechanism carrying the recording mediums.