摘要:
Coolant velocity greater than zero everywhere within the coolant channels (78, 85) of fuel cells (38) in a fuel cell stack (37) is assured by providing a flow of biphase fluid in the coolant channels, the flow being created by the outflow of a condenser (59). Positive pressure is applied to the coolant inlet (66) of the coolant channels. Biphase flow from an oxidant exhaust condenser, which may be a vehicle radiator (120), renders the coolant return flow more freeze tolerant. Using biphase flow within the coolant channels eliminates the need for a bubble-clearing liquid pump and reduces liquid inventory and other plumbing; this makes the fuel cell power plant more freeze tolerant.
摘要:
A solar power system includes a solar energy collector that has at least one solar receiver that is operable to carry a working fluid and at least one solar reflector that is operable to direct solar energy towards the at least one solar receiver to heat the working fluid. The working fluid has a maximum predefined operational temperature up to which it can be heated. A first storage unit is connected to receive the working fluid from the at least one solar receiver, and a second storage unit is connected to provide the working fluid to the at least one solar receiver. A power block generates electricity using heat from the heated working fluid. A heater is operable to heat the working fluid to approximately the maximum predefined operational temperature.
摘要:
A buoyant pool chair supports a swimmer in an upright, semi-reclining or sitting position while the chair is floating in a swimming pool. Interconnected rigid frame members collectively form an open chair frame for supporting buoyant cushions. The buoyant cushions include layers of flexible cushion material secured together in overlapping relation, with the frame members being sandwiched between the overlapping layers. A layer of adhesive material bonds the overlapping cushion layers together and forms a water-tight seal around the frame members. A flexible layer of a water-resistant coating material is bonded to external surface portions of the buoyant cushions to provide a further protective layer and water-tight seal.
摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into the fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
A fuel cell stack includes at least one fuel cell having a fuel inlet for directing a hydrogen fuel to the fuel cell to generate electric current; a sensor cell having an anode, a cathode and a membrane between the anode and the cathode, the anode being communicated with the fuel inlet to receive a portion of fuel from the fuel inlet, the sensor cell being connected across the stack to carry the electric current whereby hydrogen from the portion of fuel is electrochemically pumped to the cathode of the sensor cell; and a sensor communicated with the sensor cell to receive a signal corresponding to evolution of hydrogen from the anode to the cathode of the sensor cell and adapted to detect contaminants in the fuel based upon the signal.
摘要:
A method for operating a fuel cell power plant. The fuel cell can include a reactant passage (22) with an upstream portion and a downstream portion for providing reactant to an electrode (16, 18), at least one liquid passage (24), and a plate (20) made from a porous material that is liquid permeable and conductive. The porous material separates the reactant passage and the liquid passage. A pressure profile is controlled to provide a positive pressure difference in the upstream portion and a negative pressure difference in the downstream portion. A positive pressure difference is one where the liquid pressure is higher than that of the reactant. A negative pressure difference is one where the liquid pressure is less than that of the reactant. The pressure profile can be used to provide enhanced humidification of the reactant in the upstream portion and effective liquid water removal in the downstream portion to maximize both the performance and the life of the fuel cell.
摘要:
A PEM fuel cell power plant includes fuel cells, each of which has a cathode reactant flow field plate which is substantially impermeable to fluids, a coolant source, and a fluid permeable anode reactant flow field plate adjacent to said coolant source. The anode reactant flow field plates pass coolant from the coolant sources into the cells where the coolant is evaporated to cool the cells. The cathode flow field plates prevent reactant crossover between adjacent cells. By providing a single permeable plate for each cell in the power plant the amount of coolant present in the power plant at shut down is limited to a degree which does not require adjunct coolant purging components to remove coolant from the plates when the power plant is shut down during freezing ambient conditions. Thus the amount of residual frozen coolant in the power plant that forms in the plates during shut down in such freezing conditions will be limited. The power plant can thus be restarted and brought up to full operating power levels quickly due to the reduced amount of frozen coolant that must be melted during startup. Pressure in the coolant source is preferably greater than ambient pressure, and pressure in the anode reactant flow field is greater than the pressure in the coolant source so as to prevent the coolant from flooding the cells. The power plant is well suited for use in powering vehicles.
摘要:
A power plant (10) includes at least one fuel cell (12), a coolant loop (18) including a freeze tolerant accumulator (22) for storing and separating a water immiscible fluid and water coolant, a direct contact heat exchanger (56) for mixing the water immiscible fluid and the water coolant within a mixing region (72) of the heat exchanger (56), a coolant pump (21) for circulating the coolant through the coolant loop (18), a radiator loop (84) for circulating the water immiscible fluid through the heat exchanger (56), a radiator (86) for removing heat from the coolant, and a direct contact heat exchanger by-pass system (200). The plant (10) utilizes the water immiscible fluid during steady-state operation to cool the fuel cell and during shut down of the plant to displace water from the fuel cell (12) to the freeze tolerant accumulator (22).
摘要:
A fuel cell stack has a cascaded fuel flow field in which groups (10-12) of fuel cells (13, 13a) are arranged in flow-series, there being a fuel purge inlet valve (33) to provide fuel flow directly to two of the groups (11-12) downstream in the series, and a fuel purge outlet valve (36) to vent fuel flow directly from the first and second groups (10, 11) of fuel cells (13), whereby to avoid large pressure drop in the lowest group (12) of the series, to thereby facilitate quick purging of the fuel flow field. In other embodiments, rotary gates (40, 41) or sliding gates (56, 57) within manifolds cause fuel to flow into and out of all three groups directly during a purge.