Abstract:
An additive manufacturing system for printing a three-dimensional part, which includes one or more electrophotography engines configured to develop layers of the three-dimensional part, a rotatable transfer belt configured to receive the developed layers from the electrophotography engine(s), a detector configured to measure powder densities of the developed layers on the rotatable transfer belt, and to transmit signals relating to the measured powder densities to a controller assembly, and a printing assembly configured to receive the developed layer from the rotatable transfer belt and to print the three-dimensional part from the developed layers.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system, the liquefier assembly comprising a downstream portion having a first average inner cross-sectional area, and an upstream having a second average inner cross-sectional area that is less than the first inner cross-sectional area, the upstream portion defining a shoulder configured to restrict movement of a melt meniscus of a consumable material.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system, the liquefier assembly comprising a downstream portion having a first average inner cross-sectional area, and an upstream having a second average inner cross-sectional area that is less than the first inner cross-sectional area, the upstream portion defining a shoulder configured to restrict movement of a melt meniscus of a consumable material.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.
Abstract:
A ribbon liquefier comprising an outer liquefier portion configured to receive thermal energy from a heat transfer component, and a channel at least partially defined by the outer liquefier portion, where the channel has dimensions that are configured to receive the ribbon filament, and where the ribbon liquefier is configured to melt the ribbon filament received in the channel to at least an extrudable state with the received thermal energy to provide a melt flow. The dimensions of the channel are further configured to conform the melt flow from an axially-asymmetric flow to a substantially axially-symmetric flow in an extrusion tip connected to the ribbon liquefier.
Abstract:
A coil assembly comprising a coil of a strand-based material retained in a figure-8 configuration, and having an inner layer and an outer layer, where the inner layer of the coil defines a core region of the coil, and where the coil is configured to unwind loop by loop beginning from the inner layer and moving towards the outer layer as the strand-based material is drawn through a payout hole. The coil assembly also comprises a permeable hub configured to reduce payout entanglement of the strand-based material.