摘要:
A distribution switchgear has an equipment room, main busbar room and cable room, which are formed in a distribution panel housing by partitioning the housing, from front to back such that the equipment room is located just behind the front door of the housing, with the busbar room behind the equipment room. In the equipment room are disposed a circuit breaker, a current transformer on a load side of the circuit breaker and a zero-phase-sequence current transformer on a power supply side of the circuit breaker. The equipment units are vertically arranged in the equipment room. In the busbar room are a solid-insulated main busbar, a solid-insulated link busbar connected with the main busbar and connected with one side of each of the equipment units and a solid-insulated branch busbar connected with the other side of each of the equipment units.
摘要:
A puffer type gas-blast circuit breaker includes a guide section arranged at a coupler section between a shaft section of a puffer cylinder and a dielectric operating rod, for guiding both in the axis direction of a current interruption section and in the radial direction thereof, thereby to suppress or eliminate the occurrence of misalignment of center axis between movable components and fixed ones thus causing a gap to remain constant between a dielectric nozzle and a fixed arc contact. With such an arrangement, the gap between the nozzle and the contact can be kept uniform even when the pole-to-pole distance is increased with an increase in the high withstanding voltage of the breaker. This ensures that the surface-creeping electric field on the inner surface of the dielectric nozzle can be at a desired design value, thus enabling to provide a stable pole-to-pole insulation characteristic during current interruption operations.
摘要:
An insulation gas filled circuit breaker in which a circuit breaking portion including two separably opposing contacts and a capacitor connected in parallel between the two contacts in the circuit breaking portion are disposed in a closed metal container filled with gas having an insulating property. A shield is provided at both the side of the capacitor facing the circuit breaking portion and the side of the capacitor facing the closed metal container for relaxing the electric field concentration near the capacitor. The top end of the shield is positioned so as to extend from the contacting face between the capacitor and an electrode pressing the capacitor toward the capacitor by a predetermined distance, whereby the dielectric strength of the capacitor connected in parallel with the circuit breaking portion is increased and a highly reliable and compact insulation gas filled circuit breaker of a high voltage and a large capacity use is provided.
摘要:
Breaking poles (1) and (2) are respectively secured to respective conductor bodies (4) and (5) and electrically connected thereto, and the conductor bodies (4) and (5) are fixedly secured and connected to each other by an interpole insulating support body (3). Interpole capacitors (7) are accommodated in the respective side walls of the interpole insulating support body (3). These parts for the breaking portion are accommodated within a grounded metal container (19) together with insulating gas and are secured to an operating box (18) via an insulating support body (17). The breaking poles (1) and (2) are designed to be transmitted an actuating force from the operating box (18) via an actuating insulation rod (not shown) and perform a breaking/making operation.
摘要:
Provided are a method of manufacturing an electrode for a secondary battery which can properly maintain the temperature of a hot gas while requiring a smaller amount of hot gas, and a hot-gas drying furnace used for the method. A control device calculates an amount of decrease in temperature of a hot gas at a blowing position of a nozzle (first position) based on a temperature of the hot gas at second position situated downstream of the first position and a temperature of the hot gas at third position situated downstream of the second position. The control device adds the amount to a set temperature of the hot gas at the first position to calculate a modified set temperature. The control device adjusts an output of a heater depending on a difference between the modified set temperature and the temperature at the first position.
摘要:
The non-aqueous electrolyte secondary battery 10 provided by the present invention comprises a positive electrode 30, a negative electrode 50 and a non-aqueous electrolyte. The negative electrode 50 includes a negative electrode current collector 52 and a negative electrode active material layer 54 formed on the current collector 52, the negative electrode active material layer 54 containing a negative electrode active material 55 capable of storing and releasing charge carriers and having shape anisotropy so that the charge carriers are stored and released along a predefined direction. The negative electrode active material layer 54 includes, at a bottom thereof contacting the current collector 52, a minute conductive material 57 with granular shape and/or minute conductive material 57 with fibrous shape having an average particle diameter that is smaller than that of the negative electrode active material 55, and includes, at the bottom thereof; a part of the negative electrode active material 55. At least 50% by number of the total amount of the negative electrode active material 55 is oriented so that the direction of storage and release of the charge carriers is at an angle of 45° or more and 90° or less relative to the surface of the current collector 52.
摘要:
The non-aqueous electrolyte secondary battery 10 provided by the present invention comprises a positive electrode 30, a negative electrode 50 and a non-aqueous electrolyte. The negative electrode 50 includes a negative electrode current collector 52 and a negative electrode active material layer 54 formed on the current collector 52, the negative electrode active material layer 54 containing a negative electrode active material 55 capable of storing and releasing charge carriers and having shape anisotropy so that the charge carriers are stored and released along a predefined direction. The negative electrode active material layer 54 includes, at a bottom thereof contacting the current collector 52, a minute conductive material 57 with granular shape and/or minute conductive material 57 with fibrous shape having an average particle diameter that is smaller than that of the negative electrode active material 55, and includes, at the bottom thereof; a part of the negative electrode active material 55. At least 50% by number of the total amount of the negative electrode active material 55 is oriented so that the direction of storage and release of the charge carriers is at an angle of 45° or more and 90° or less relative to the surface of the current collector 52.
摘要:
It is an object to provide a switchgear capable of alleviating burden to a manager. In order to solve the aforementioned problem, the switchgear according to the present invention includes a plurality of compatible switch units each provided in a housing and closing/interrupting/ground functions so that the plurality of switch units are connected to supply power to the load side.
摘要:
A method for producing a battery comprises a deformation step for moving a first metal foil forming a pair of perpendicularly intersecting portions of a first metal, respectively, toward the outside in a second radial direction while enlarging the inside diameter, in the second radial direction, of a first metal winding part by making a force act on the pair of perpendicularly intersecting portions of a first metal toward the outside in the second radial direction, and a resistance welding step for pressing a pair of first metal welding portions toward the inside in a first radical direction under a state where the first terminal welding part of a first current collecting terminal member is arranged on the radial by inside of the first metal winding part after the first metal winding part is deformed.
摘要:
When a battery current is not larger than a limit current set depending on the battery temperature and is flowing continuously for a predetermined time set depending on the battery temperature or longer, a decision is made that a secondary battery is in stable state. When the secondary battery is in stabilized state, the battery voltage is considered to be equal to the open circuit voltage and SOC estimation is performed based on the open circuit voltage-SOC characteristics. When the product of the internal resistance of the secondary battery and the limit current is made substantially constant (constant voltage) by setting the limit current in association with temperature dependence of the internal resistance, estimation error can be kept within a predetermined range in the stabilized state even if SOC estimation is performed while the battery voltage is assumed as the open circuit voltage. Consequently, SOC can be estimated with high precision within a predetermined error by a simple and reliable system under stabilized state.