Abstract:
Exemplary embodiments include a device for connecting and disconnecting a high-voltage circuit. The device includes a first main terminal and a second main terminal, a first intermediate terminal connected to the first main terminal by a first impedance, a first arc quenching chamber arranged between the first intermediate terminal and the first main terminal, a second intermediate terminal connected to the first intermediate terminal by a second impedance, the first intermediate terminal being connected in series between the first main terminal and the second intermediate terminal, a second arc quenching chamber arranged between the first intermediate terminal and the second intermediate terminal, and a mobile armature making it possible to connect, in the disconnection direction, the second main terminal on the one hand and, on the other hand and in succession, the first main terminal, the first intermediate terminal and the second intermediate terminal.
Abstract:
A circuit breaker having at least one capacitor assembly connected in parallel across a contact of the circuit breaker. The capacitor assembly can be housed with the contact within a sealed enclosure of the circuit breaker. The enclosure can be configured to house an insulating medium that is configured to reduce or quench an arc(s) that may form at least when the contact of the circuit breaker is displaced from a closed position to an open position. The capacitor assembly, which includes a transient recovery voltage (TRV) capacitor, can be configured to delay terminal fault and short line fault TRV and the rate of rise of the initial TRV (ITRV) that can appear across the open contact of the circuit breaker.
Abstract:
A switching device in a vacuum switching tube or for arc quenching in gases. The switching device has an arc-quenching device. There is also described a method for operating a switching device in a vacuum switching tube or in arc quenching in gases, which switching device has an arc-quenching device for medium-voltage, low-voltage and/or high-voltage applications.
Abstract:
A voltage dividing capacitor (1) arranged parallel to a vacuum interrupter (2) has a long narrow cylindrical-shaped capacitor series (16) that is configured by a plurality of capacitor elements (15) being connected with connecting screws. One end of the capacitor series (16) is supported by a fixed supporting unit (25), and the other end id supported by a movable supporting unit (26) so as to allow thermal expansion and contraction. A insulation tube (31) fixed to the movable supporting unit (26) has a short length, and only a first capacitor element (15A) is fitted into the insulation tube (31). Since a portion where high electric field appears is a middle of five capacitor elements (15) and electric field at an end portion of the capacitor series (16) is low, forming of triple junction at the portion of the high electric field is avoided.
Abstract:
Surge arrester structure is provided for a dead tank circuit breaker. The circuit breaker has a pole assembly with a first electrical terminal in a first bushing, and a second electrical terminal in a second bushing. The first terminal is electrically connected to a stationary contact and the second terminal is electrically connected to a movable contact. The surge arrester structure includes a surge arrester having first and second opposing ends. A first conductor structure electrically and mechanically connects the first end of the surge arrester with an end of the first terminal. A second conductor structure electrically and mechanically connects the second end of the surge arrester with an end of the second terminal. The surge arrester is electrically connected parallel with respect to the stationary and movable contacts so that the surge arrester can limit transient over voltages occurring across the contacts when the contacts are open.
Abstract:
The fast switch includes: a housing; a vacuum interrupter installed in the housing, connected to a main circuit, and configured to open and close the main circuit; a contact spring coupled to a mover of the vacuum interrupter, and configured to provide a contact force; an insulating rod connected to the contact spring; a permanent magnet actuator connected to a lower end of the insulating rod, and configured to provide a switching driving force; a first capacitor configured to provide a discharge current to a coil of the permanent magnet actuator; a driving coil connected to a lower end of the permanent magnet actuator; and a second capacitor configured to provide a discharge current to the driving coil.
Abstract:
A connector device includes a device body and a pin assembly. The connector device includes a bushing portion with a conductive bus having a first bore, a conductive housing with a second bore that is axially aligned with the first bore, an internal chamber separating the first bore and the second bore, and a gelatinous silicone material enclosed within the internal chamber. The pin assembly includes a non-conductive tip and a conductive pin secured to the non-conductive tip. The pin assembly is configured to move axially, within the first and second bores, between a closed position that provides an electrical connection between the conductive bus and the conductive housing and an open position that provides no electrical connection between the conductive bus and the conductive housing. The gelatinous silicone material inhibits voltage arcing across a surface of the non-conductive tip when the pin assembly is in the open position.
Abstract:
Contact alignment structure aligns a contact of a circuit breaker. The circuit breaker includes the contact fixed to a conductor, and a resistor tube having a longitudinal axis. The contact alignment structure includes a tube clamp assembly for selectively coupling to a periphery of the resistor tube. A rocker assembly is coupled with the tube clamp assembly and with the conductor so that the conductor is supported by the rocker assembly only at one end of the conductor. When the rocker assembly is coupled to the conductor, the tube clamp assembly can be rotated about the periphery of the resistor tube to change a position of the contact in a first degree of freedom, and a portion of the rocker arm assembly can be moved to change a position of the contact in a second degree of freedom that is parallel to the longitudinal axis of the resistor tube.
Abstract:
A circuit breaker is provided which can be filled with a quenching gas and which has two contact arrangements, which can be moved relative to one another and along a longitudinal axis of the circuit breaker. The contact arrangements form a arcing contact system and a rated current contact system connected electrically in parallel with it. One of the contact arrangements includes inner rated current contacts and outer rated current contacts of the rated current contact system, where the inner rated current contacts overhang the outer rated current contacts in the direction of the longitudinal axis, and the outer rated current contacts coaxially surround the inner rated current contacts. The circuit breaker has a high current carrying capability as well as a reliable switching-on and -off behavior, such as during and after the occurrence of a short-circuit current in the circuit breaker.
Abstract:
A switch device includes first and second contacting portions including first and second fixed contacting portions and first and second movable contacting portions configured to contact the first and second fixed contacting portions, respectively and provided to be adjacent from each other; and a magnet unit provided such that a first pole is positioned to face the first contacting portion and a second pole is positioned to face the second contacting portion to generate magnetic fields between the first fixed contacting portion and the first movable contacting portion and between the second fixed contacting portion and the second movable contacting portion, respectively.