Abstract:
An electrode for an ignition device is made from a conductive ceramic of the form Mn+1AXn, where M is a transition metal, A is a group IIIA or IVA element, and X is nitrogen, carbon, or both carbon and nitrogen. M may be transition metals selected from the group of Ti, Mb, Ta, V, Cr, Mo, Sc, Zr and Hf. A may be selected from a group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As and S. The spark ignition device may include a spark plug having an insulator, conductive shell, center electrode and ground electrode where the conductive ceramic electrode is at least one of the center or ground electrodes.
Abstract:
A spark plug and a method of manufacturing the same, where the spark plug has a metal shell, an insulator, a center electrode, a ground electrode, and a gasket located over a threaded portion of the shell and used to seal the spark plug against a cylinder head. Once the gasket is attached on the spark plug, it is shrunk to become a post-formed gasket with an inner diameter that prevents the post-formed gasket from slipping over a threaded portion of the metallic shell. This process may be carried out with a collet type machine that produces a post-formed gasket that is flat and has a substantially uniform thickness, which can improve the sealability of the gasket. This may be important when the spark plug is installed in a cylinder head made from a lost foam casting process or other process that creates a somewhat porous sealing surface.
Abstract:
An electrically conductive glass seal for providing a hermetic bond between an electrically conductive component and an insulator of a corona igniter is provided. The glass seal is formed by mixing glass frits, binder, expansion agent, and electrically conductive metal particles. The glass frits can include silica (SiO2), boron oxide (B2O3), aluminum oxide (Al2O3), bismuth oxide (Bi2O3), and zinc oxide (ZnO); the binder can include sodium bentonite or magnesium aluminum silicate, polyethylene glycol (PEG), and dextrin; the expansion agent can include lithium carbonate; and the electrically conductive particles can include copper. The finished glass seal includes the glass in a total amount of 50.0 to 85.0 weight (wt. %), and electrically conductive metal particles in an amount of 15.0 to 50.0 wt. %, based on the total weight of the glass seal.
Abstract:
A welding system for welding small precious metal firing tips to spark plug electrodes, such as ground and/or center electrodes. According to one embodiment, the welding system includes a firing tip storage assembly and a firing tip welding assembly, where the firing tip storage assembly uses pressurized gas introduced at the bottom of a part container to float or lift the firing tips so that the firing tip welding assembly can more easily acquire them with a vacuum-driven nozzle that also doubles as a welding electrode. The firing tip welding assembly is mounted to a robotic apparatus that can index or move the firing tip welding assembly between the firing tip storage assembly, a welding station and/or any other suitable positions.
Abstract:
The invention provides a system and method for controlling corona discharge. A driver circuit provides energy to the corona igniter and detects any arc formation. Optionally, in response to each arc formation, the energy provided to the corona igniter is shut off for a short time to dissipate the arc. Once the arc dissipates, the energy is applied again to restore the corona discharge. The driver circuit obtains information relating to the corona discharge, such as timing and number of arc formations. A control unit adjusts the energy provided to the corona igniter, shut-off time, or the duration of the corona event based on the information. The adjusted energy levels and duration are applied during subsequent corona events. For example, the voltage level could be reduced or the shutoff time could be increased to limit arc formations and increase the size of the corona discharge during the subsequent corona events.
Abstract:
A spark plug includes a metallic shell, an insulator, a center electrode, a ground electrode, and a thin firing pad. The thin firing pad is made from a noble metal and can be attached to the center electrode, the ground electrode, or to both. In some examples, the thin firing pad possesses certain geometric properties and relationships that can improve ignitability and durability of the thin firing pad.
Abstract:
An electrode core material that may be used in electrodes of spark plugs and other ignition devices to provide increased thermal conductivity to the electrodes. The electrode core material is a precipitate-strengthened copper alloy and includes precipitates dispersed within a copper (Cu) matrix such that the electrode core material has a multi-phase microstructure. In several exemplary embodiments, the precipitates include: particles of iron (Fe) and phosphorous, particles of beryllium, or particles of nickel and silicon.
Abstract:
A spark ignition device has a ceramic insulator surrounded by a metal shell. The metal shell extends along a longitudinal axis to a distal end. A center electrode is received in the ceramic insulator and extends along the longitudinal axis. A ground electrode has an attachment end fixed by a weld joint to the distal end of the shell and a free end extending from the distal end to provide a spark gap. The weld joint includes a capacitive pulse discharge weld joint and a laser weld joint, which in combination inhibit material expulsion; provide a reliable, strong attachment of the ground electrode to the shell; provide an improved heat transfer path between the ground electrode and the shell, and facilitate repeatable and accurate positioning of the ground electrode to the shell. The weld joint includes a homogeneous mixture of the metal shell and the ground electrode.
Abstract:
A corona igniter (20) comprises a central electrode (22) surrounded by an insulator (24), which is surrounded by a metal shell (26). A ceramic combustion seal (30) is disposed along the gap (32) between a shell lower end shell (52) and the insulator nose region (48) to provide a hermetic seal therebetween. The ceramic combustion seal (30) is typically a bushing, cylinder, or ring formed of sintered alumina. A glass material or glass/ceramic mixture (60) typically adheres the ceramic combustion seal (30) to the shell (26) and the insulator (24). Alternatively, the ceramic combustion seal (30) is brazed to the shell (26), and the glass material or glass/ceramic mixture (60) adheres the ceramic combustion seal (30) to the insulator (24).
Abstract:
A corona igniter 20 includes a central electrode 34 for receiving a high radio frequency voltage from a power source and emitting a radio frequency electric field to ionize a fuel-air mixture and provide a corona discharge 22. The corona igniter 20 includes an insulator 38 extending along the central electrode 34 longitudinally past the central electrode 34 to an insulator firing end 40. The insulator firing surface 42 and the center axis A present an angle α of not greater than 90 degrees therebetween, for example the insulator firing surface may be concave. The central electrode 34 may also include a firing tip 50, in which case the insulator firing surface 42 surrounds all sides of the firing tip 50. The geometry of the insulator firing surface 42 concentrates and directs the corona discharge 22.