Abstract:
A touch screen assembly including a display, infra-red light emitters, photo diodes, a transparent frame including an exposed upper edge along its perimeter, and internally reflective facets for directing light emitted by the emitters along light paths that travel upward through one side of the frame, over the display screen, downward through the opposite side of the frame, and onto the photo diodes, and a processor operative to identify a location of an object touching the display, based on amounts of light detected by photo diodes when light emitted by light emitters is blocked along its light path by the object, and to recognize the object touching an outer wall of the frame, based on amounts of light detected by activated photo diodes when light emitted by activated emitters is absorbed along its light path by the object at the outer wall, thereby providing touch sensitivity to the frame itself.
Abstract:
A touch screen including a housing, a display mounted in the housing, a plurality of collimating lenses mounted in the housing along two opposite edges of the display and arranged along the two edges so as to be shift-aligned relative to one another, a plurality of light pulse emitters mounted in the housing that are spaced apart from and transmit light pulses through the collimating lenses of one of the two edges over the display, a plurality of light pulse receivers mounted in the housing that are spaced apart from and receive the light pulses through the collimating lenses of the opposite of the two edges, and a calculating unit, mounted in the housing and connected to the receivers, that determines a location of a pointer on the display that partially blocks the light pulses transmitted by the emitters, based on outputs of the receivers.
Abstract:
A method for use by a touch screen in which light transmitted inside the screen is scattered by an object touching the screen from outside the screen, the method including activating emitter-receiver pairs for a plurality of emitters and receivers while an object is touching a screen from outside the screen, wherein light emitted by each emitter is transmitted inside the screen, wherein each emitter is associated with a limited number of receivers that detect significant light from such emitter while no object is touching the screen, and wherein the activated emitter-receiver pairs include pairs for which the receiver is not associated with the emitter in the pair, determining that receivers not associated with emitters detect significant light due to the object scattering the light emitted by the emitters, and deriving the location where the object is touching the screen from the determining.
Abstract:
A touch screen including a housing, a display mounted in the housing, a plurality of collimating lenses mounted in the housing and arranged along a first edge of the display, a plurality of light pulse emitters mounted in the housing that are spaced apart from and serially transmit light pulses through the collimating lenses over the display, a light guide mounted in the housing along the edge of the display opposite the first edge, for receiving the light pulses, the light guide including a reflective strip that reflects light pulses to one end of the light guide, a light pulse receiver mounted in the housing near the one end of the light guide, for receiving the reflected light pulses, and a calculating unit, mounted in the housing and connected to the receiver, for determining a location of a pointer on the display that partially blocks light pulses transmitted by the emitters, based on outputs of the receiver.
Abstract:
A light-based finger gesture user interface for an electronic device including a housing for an electronic device, a display mounted in the housing, a cavity, separated from the display, penetrating two opposite sides of the housing, a detector mounted in the housing operative to detect an object inserted in the cavity, and a processor connected to the detector and to the display for causing the display to render a visual representation in response to output from the detector.
Abstract:
A light-based touch sensitive device, including a housing, a surface encased in the housing, a layer of elastic material above the surface, a plurality of light pulse emitters mounted in the housing, that transmit light pulses through the layer, a plurality of light pulse receivers mounted in the housing, that receive the light pulses transmitted through the layer, and a calculating unit, mounted in the housing and connected to the receivers, that determines a location of a pointer that touches the layer and creates an impression in the layer, based on outputs of the receivers.
Abstract:
A non-transitory computer readable medium storing instructions which, when executed by a processor of an electronic device that includes a touch sensitive and pressure sensitive display, cause the processor to enable a user interface of the electronic device, by which a glide gesture along the display and an amount of pressure applied to the display both generate the same user interface command.
Abstract:
A graphics tablet system including a housing, a touch screen in the housing for receiving touch input, and for displaying graphics corresponding to the received touch input, a plurality of styli for performing touch input, each stylus including an RFID chip storing one or more graphic attributes, and a visible indicator of the one or more graphic attributes, an RFID reader in the housing for reading the stored one or more graphic attributes from a stylus touching the touch screen, and a processor in the housing, connected to the touch screen and to the RFID reader, for rendering a drawing on the touch screen according to the motion of the stylus on the touch screen and according to one or more graphic attributes read by the RFID reader from the stylus, wherein the plurality of styli store different one or more graphic attributes.
Abstract:
A light-based proximity sensor, including light emitters mounted in a housing alongside one side of the housing, oriented to emit light beams in a direction outside of the housing, light receivers mounted alongside the same one side oriented to receive light beams entering from inside the housing, the receivers being farther away from the one side than the emitters so as not to receive light beams emitted by the emitters that are not reflected, at least one reflective surface mounted farther away from the one side than the receivers, for redirecting light beams entering from outside the housing so as to enter the receivers, and a processor for controlling the emitters and the receivers, and for calculating a location of a nearby object outside of the housing that reflects light beams exiting the housing back into the housing, based on the reflected light beams received by the receivers.
Abstract:
A touch sensor including a housing, a light guide mounted in the housing the light guide featuring an aperture through which light exits and enters the light guide, and an inner surface facing the interior of the housing, the sensor further includes two light emitters mounted in the housing for emitting light beams into the light guide that exit the aperture at diverging angles and a light receiver mounted in the housing for receiving reflected light beams entering the aperture at an angle of incidence different than the diverging angles.