Abstract:
The methods and systems of this invention allow for independent adaptive control of ringing and overshoot effects in 2-dimensional array interpolation processes, including in image and video rescaling and analysis. The methods and systems can use either a column-wise or a row-wise interpolation, or a combination thereof. Each uses a respective preliminary interpolation of data, followed by ringing and/or overshoot control. Controllable parameters allow variability in the amount of ringing and/or overshoot retained in the interpolated data. The ringing and overshoot controls apply a local analysis of the data to adjust the preliminary interpolation results. The methods may be repeated iteratively, for example, to obtain a desired rescaling of an image data array.
Abstract:
A capacitive touch sensor includes horizontal lines vertical lines. Switching circuitry is coupled to the horizontal and vertical lines of the capacitive touch sensor. The switching circuitry is operable in a first mode to configure the horizontal lines as receive lines and the vertical lines as transmit lines for making a cross-capacitance measurement. In one implementation, the switching circuit is further operable in a second mode to configure the horizontal lines as transmit lines and the vertical lines as receive lines for making an additional cross-capacitance measurement. In another implementation, the switching circuit is further operable in a second mode to configure the vertical lines for making a self capacitance measurement. The various capacitance measurements from the first and second modes are algorithmically combined to obtain a total capacitance measurement having a reduced noise component.
Abstract:
A capacitive sensing structure is formed from first electrically conductive sensor structures electrically coupled to each other in a first direction, and second electrically conductive sensor structures electrically coupled to each other in a second direction. Each first electrically conductive sensor structure includes a first diamond-shaped central region with electrically coupled first finger structures extending away therefrom. Each second electrically conductive sensor structure includes a second diamond-shaped central region with electrically conducting second finger structures extending away therefrom. Each second finger structure extends between two adjacent ones of the first finger structures. Floating structures may be included within an opening formed in the first diamond shaped central region. Floating structures may further be included between the first and second finger structures.
Abstract:
A noise suppression method for a capacitance-to-voltage converter varies a sequence of sensing signal edges during a plurality capacitance measurements to produce a number of noise responses. The sensing signal edges are varied in a repetitive rising and falling edge pattern for each sequence. Three or more such sequences can be used, and the sequence with the highest noise is eliminated and the others are averaged. The noise suppression method can be implemented during calibration and then used for a number of normal acquisitions. The noise suppression method can be applied to capacitance-to-voltage converters having monitoring and integration phases.
Abstract:
Aspects of the invention are directed towards an apparatus and method for detecting conventional and exotic cadences in video sequences. The cadence detector includes a motion auto-correlation unit using the inter-frame/field motion information to detect the cadence and a motion cross-correlation unit using the inter-frame/field motion information and the detected cadence to determine the cadence phase. The cadence detector also may include a reset signal generator to generate a reset signal to control the motion auto-correlation unit and the motion cross-correlation unit. The exotic cadence detector is robust and may support many cadences with reduced cadence detection latency as compared to the prior art.
Abstract:
A circuit includes a plurality of logic gates and a drive circuit. The plurality of logic gates are coupled between a first supply node and a second supply node. Each logic gate has at least one input and consumes a short circuit current during a logic state transition. The drive circuit is coupled to the inputs of the plurality of logic gates to deliver a copy of an input signal to each logic gate, wherein the input signal copies arrive at the inputs of the logic gates at substantially different times. The circuit may be incorporated in a touch screen panel and a display.
Abstract:
A protection layer is coated or otherwise formed over the interconnect structure. The interconnect structure includes a metal line (such as top and bottom metal layers connected by a metal via) and a low-K material. The protection layer includes a vertically aligned dielectric or other material dispersed with carbon nanotubes. The protection layer could include one or multiple layers of carbon nanotubes, and the carbon nanotubes could have any suitable dispersion, alignment, and pattern in each layer of the protection layer. Among other things, the carbon nanotubes help to reduce or prevent damage to the interconnect structure, such as by reducing or preventing the collapse of the low-K material or delamination between the metal line and the low-K material.
Abstract:
A method includes receiving an audio signal and identifying one or more steady-state segments of the audio signal. The method also includes identifying at least one portion of the one or more segments that contains a specified frequency. Further, the method includes generating a wavetable using the at least one identified portion of the one or more segments. In addition, the method could include synthesizing an output audio signal using the wavetable. The output audio signal could represent a ringtone in a mobile telephone.
Abstract:
A device having an integrated circuit that includes a relative humidity sensor as well as a memory element for storing calibration information for the relative humidity sensor. Because of the nature of fabrication of an integrated circuit for a relative humidity sensor, variances in the creation of electronic components therein may lead to a need to calibrate the sensor after assembly. Such calibration information may be ascertained at the time of fabrication and stored in a memory component disposed on the integrated circuit chip. By storing the calibration information, which may be determined at the time of fabrication, one does not need to determine such calibration information later at assembly or store the already determined calibration information in a remote location until assembly if it was, in fact, ascertained at fabrication. Then, at assembly, one needs only to read the calibration information in order to calibrate the relative humidity sensor.
Abstract:
Aspects of the invention are directed towards an apparatus and method for detecting local video pixels in mixed cadence video. The local video detector comprises a comb detector that is adaptive to the contour of moving objects and local contrast, a motion detector that is robust to false motion due to vertical details, and a fader value estimator that provides a video confidence value to a fader that combines film mode and video mode processing results. The coupling of the local video detector to a film mode detector increases the robustness, accuracy, and efficiency of local film/video mode processing as compared to the prior art.