摘要:
The present disclosure is related to homogeneous alloys comprising titanium and 9% to less than 20% by weight of tungsten, wherein the alloy has a yield strength of at least 120,000 psi and ductility of least 20% elongation; and with further alloying an ultimate tensile strength of at least 200,000 psi and useful ductility of at least 2% elongation; and with the addition of ceramic particulate reinforcements can exhibit an ultimate tensile strength of at least 180,000 psi. Products and metal matrix composites comprising such homogeneous alloys are also disclosed. The metal matrix composites further comprise a discontinuous reinforcement chosen from TiC, TiB2, or TiB, particles or combinations of such particles. Method of making such alloys and composites as well as products made from such alloys and composites are also disclosed.
摘要:
The present invention relates to composite soft magnetic materials having high strength and high specific resistance and a method of producing such materials by: heating mixture powder having a composition containing 0.05-1 wt % of polyimide resin powder having an average particle diameter of 1 to 100 μm, 0.002-0.1 wt % of fine amide-based wax powder having an average particle diameter of 1 to 20 μm, and the balance composed of insulating film-coated soft magnetic powder obtained by forming an insulating film on the surface of soft magnetic powder, at a temperature of 60 to 110° C.; filling the heated mixture powder in a mold which is heated at a temperature of 100 to 150° C.; compacting the heated mixture powder at a molding pressure of 700 to 1200 MPa to obtain a compact; and curing the obtained compact at a temperature of 225 to 300 ° C.
摘要:
A method of production of large Ingots of neutron attenuating composites using a vacuum-bellows system allows for large cross-sectional shapes to be extruded and rolled. A vacuum-bellows technology which allows the manufacturing of large diameter ingots. A variety of primary metal matrix materials can be used in this technology. High specific strength and stiffness can be achieved because the technology allows for final densities of 99% and higher. The vacuum-bellows technology allows metals and ceramics to blend and mesh together at compression pressures of 800 tons with elevated temperatures. The controlled compression movement allows for any oxide layer, on the metal, to be broken up and consolidated with the chosen ceramic particulate. By controlling the amount of boron-rich ceramics, by volume or weight, certain B-10 isotope areal densities can be accomplished. These B-10 isotopes attenuate neutrons in nuclear fuel. Other elements, which have high, cross-sectional Barn values can be used.
摘要:
Metallurgical powder compositions are provided that include silicon carbide to enhance the strength, ductility, and machine-ability of the compacted and sintered parts made therefrom. The compositions generally contain a metal powder, such as an iron-based powder, that constitutes the major portion of the composition. A silicon carbide-containing powder is blended with the metal powder, preferably in the form of a silicon carbide powder. Optionally, common alloying powders, lubricants, binding agents, and other powder metallurgy additives can be blended into the metallurgical composition. The metallurgical powder composition is used by compacting it in a die cavity to produce a nullgreennull compact that is then sintered, preferably at relatively high temperatures.
摘要:
A process for preparing a sintered article of a compacted iron-based metallurgical powder. The green compact is sintered at a closely held predetermined temperature in order to achieve desired density and dimensional stability.
摘要:
A method for making a high density powdered metal article is provided. The composition consists of iron based powder, lubricant, graphite and ferro alloy additions. The composition is compacted in rigid tools at ambient temperature, sintered at high temperature and then formed in rigid tools at 40 to 90 tons per square inch to a density greater than 94% of theoretical. The high density article is then annealed. The final article demonstrates remarkable mechanical properties which are atypical of powdered metal components and approach those of wrought steel.
摘要:
Method for producing an elongated sintered article, characterized by the steps including filling powder material in a pipe, carrying out plastic deformation of the pipe filled with the powder material, and heating the pipe filled with the powder material to burn and/or sinter the powder material.The method of the present invention is advantageously applicable to production of wire or rod of ceramics, particularly so called new ceramics or fine ceramics, sintered alloys or their combination, which are difficult to shape or mold by conventional process such as wire-drawing, rolling or extrusion of powder material which is difficult to mold and machine after the powder material is sintered.
摘要:
An improvement is disclosed in a process for recovery of cobalt from cobalt bearing material to obtain fine cobalt metal powder of high purity, the improvement being mechanically compacting the powder into a billet and sintering the billet in a hydrogen atmosphere at a sufficient temperature for a sufficient time to densify the billet and form a high purity cobalt article having an oxygen content of no greater than about 500 weight parts per million.
摘要:
A method of producing a sintered composition used as a brush for a dynamo electric machine, includes the steps of compacting a powder from which the brush is to be made around one end of an electrical lead with the remainder of the lead projecting from the compacted powder, and then heating in a non-reducing atmosphere the assembly of the lead and the compacted powder to sinter the powder into the required brush and physically electrically connect the lead to the brush.
摘要:
A powder metallurgy compact and a sintered product is provided from high performance alloys difficult to compact and/or sinter. The green compact comprises a mixture of the alloy powder, which, as a result of blending and extruding is coated with a film of a solid organic binder, and consolidated to discrete bodies of an intermediate density. The green compacts are sintered to produce a final solid product.