Abstract:
A movable carriage of a support unit is guided via bearing surfaces along a base. A double acting piston and cylinder unit is formed within a bore located in the base. A piston divides the cylinder into front and rear chambers and a piston rod thereof extends through the rear end of the cylinder and is connected to the carriage for movement therewith parallel thereto. A first pressure fluid connection extends through the front end of the cylinder into the front chamber. The bore has a sleeve, the outer surface of which partly defines a channel extending along the exterior of the cylinder. A second fluid pressure connection is also arranged at the front end of the cylinder, but it communicates with the channel to communicate with the rear cylinder chamber.
Abstract:
To prevent occurrence of contamination at the time of press-inserting and fixing a guide ring that guides sliding of a piston. In a brake hydraulic pressure control apparatus (1) including: a base body (2) having a cylinder hole (3); a piston (5) fitted to the cylinder hole (3) in a freely slidable manner; and a guide ring (8) attached to an opening (9) of the cylinder hole (3) and guiding sliding of the piston (5), the guide ring (8) has: a flange portion (8e) in a lower surface (8b) opposing the cylinder hole (3), the flange portion (8e) expanding in a radial direction of the guide ring (8); and bulged portions (8c) arranged at equally-spaced intervals to an outer circumferential surface (8d) of the guide ring (8) and each bulged outward in the radial direction of the guide ring (8) when compared to the flange portion (8e). When seen from a cross section in an axial direction (Ax) of the guide ring (8), each of the bulged portions (8c) has a tapered portion (8f) expanding in the radial direction of the guide ring (8) from the lower surface (8b) toward an upper surface (8a) of the guide ring (8).
Abstract:
A magnet-type rodless cylinder (1) is provided with a guide mechanism having an outer rolling groove (26), an inner rolling groove (29), a cylinder body (32), a pair of connection paths (34) for connecting an area between the outer rolling groove and the inner rolling groove with the cylinder body, and a plurality of steel balls (36) that can roll within an endless circuit (35) formed of the cylinder body, the connection paths and the area between the outer rolling groove and the inner rolling groove, wherein the connection paths (34) are formed at a pair of inner members, i.e. return caps (33), disposed on the inner sides of metal end plates (12) that are attached to the front and rear ends in the sliding direction of a sliding body (4).
Abstract:
A multistage piston actuator exerts a driving pressure against a spring pressure into pressure chambers of piston bodies, fitted into a cylinder body, to operate the push rod. Each piston body is combined with a partition fitted into the cylinder body. Each piston body includes a pressure receiving plate portion, and an axial rod and a slidable cylindrical guide portion extending concentrically in opposite directions, the axial rod having an axial air passage connected to the pressure chambers. Each partition includes a base plate portion having a through-hole which receives the axial rod of an adjacent piston body, a large-diameter outermost cylindrical portion fitted into the cylinder body, and a slidable cylindrical guide portion slidably fit-engaged with the slidable cylindrical guide portion of the piston body. The axial rods of each piston body are brought into contact to operate the push rod.
Abstract:
The invention relates to an elastic corrugated pipe single-acting cylinder-driven mechanical gripper with a series-connection plate spring framework. The mechanical gripper consists of a palm and two flexible fingers or a palm and three flexible fingers. The flexible fingers are identical in structure. Each flexible finger consists of an elastic corrugated pipe single-acting cylinder and a series-connection plate spring. Dimensions of all plate springs connected in series are optimally designed according to grasping objects. The mechanical gripper is driven by the elastic corrugated pipe single-acting cylinder to generate a grasping force. The mechanical gripper applies to the grasping of fragile, brittle objects or the grasping of objects varying with shapes and dimensions. When connected with a robot body, the mechanical gripper particularly applies to the production and logistic fields for grasping, sorting and packing of foods, agriculture products and light industrial products.
Abstract:
A mechanism to reduce load of a hydraulic cylinder having a body, a stem movable within the body, and a piston rod connected to the stem. The mechanism includes a mechanism body attached to the body and defining a recess, and a retainer attached to the mechanism adjacent the opening of the recess so that the retainer substantially fills the opening of the recess, and having an aperture that receives an end of the piston rod. The mechanism further includes a cap attached to the piston rod of the hydraulic cylinder within the recess, the cap having a diameter greater than the diameter of the aperture in the retainer, and a spring connected to the cap at a first end and to the retainer at a second end so that as the piston rod moves relative to the failsafe mechanism body, to reduce load transfer between the piston rod and the cylinder body.
Abstract:
A system for securing a valve actuator to body of a valve assembly includes an actuator housing having housing lugs protruding radially to define a plurality of housing slots therebetween. A bonnet has bonnet lugs protruding radially to define a plurality of bonnet slots therebetween. Each of the housing lugs are sized to pass axially through a respective one of the bonnet slots when the actuator housing is in a released position and, after passing through the bonnet slots, the actuator housing is rotatable to a locked position where at least a portion of one or more of the housing lugs is axially aligned with a portion of a respective bonnet lug to prevent axial movement of the actuator housing, the actuator housing rotating less than one full revolution between the released and locked positions. A securing mechanism prevents relative rotation between the actuator housing and the bonnet.
Abstract:
A piston support portion (146) for a piston assembly (140) of a rodless cylinder (100) is provided according to the invention. The piston support portion (146) includes a support body (147) substantially matching a shape of the piston assembly (140) and configured to be positioned between a piston center portion (126) and a piston end portion (160). The piston support portion (146) further includes a plurality of guidance portions (152) extending from a circumference of the support body (147). The plurality of guidance portions (152) are configured to contact or nearly contact a piston bore (107) of the rodless cylinder (100) and guide the piston assembly (140) as it reciprocates in the piston bore (107).
Abstract:
A pair of penetrating holes are formed along a longitudinal direction in the interior of a cylinder body that constitutes a fluid pressure cylinder. One end of the pair of penetrating holes is sealed by a pair of caps formed in plate-like shapes. The caps, for example, are formed by press molding a plate body made up from a metal material such as aluminum or the like. Outer edge portions of the caps include bent portions, which are inclined at a predetermined angle in a radial outward direction. In addition, the caps are installed by means of the bent portions biting into inner circumferential surfaces of the penetrating holes.