Abstract:
A mass flow control system can be self verified for its accuracy when controlling a flow to a process. The system comprises: a control valve for controlling the flow of fluid through the system as a function of a control signal; a controller for generating the control signal as a function of measured flow of fluid through the system and a targeted flow set point; a pressure sensor for measuring the controlling fluid pressure for use in measuring and verifying the flow rate; and a source of fluid for providing a known volume of fluid for use in verifying the system accuracy anytime between steps of the flow control process.
Abstract:
A measuring system for precise measuring a density of a medium flowing in a pipe line. The measuring system comprises a temperature sensor and a pressure sensor. Both sensors communicate with a measuring electronics of the system. The measuring electronics are operable to provide, based on temperature measurement and pressure measurement, a provisional density measured value, especially according to one of the industrial standards AGAR, AGN NX-19, SGERG-88 IAWPS-IF97, ISO 12213:2006. Further, the measuring electronics provides, based on the provisional density measured value and a density correction value, which is dependant on a flow velocity of the medium, and temperature measurement, a density measured value, which differs from the provisional density measured value, and which represents the density to be measured more accurately.
Abstract:
A measuring system comprises: a measuring transducer; transmitter electronics; at least one measuring tube; and at least one oscillation exciter. The transmitter electronics delivers a driver signal for the at least one oscillation exciter, and for feeding electrical, excitation power into the at least one oscillation exciter. The driver signal, has a sinusoidal signal component which corresponds to an instantaneous eigenfrequency, and in which the at least one measuring tube can execute, or executes, eigenoscillations about a resting position. The eigenoscillations have an oscillation node and in the region of the wanted, oscillatory length exactly one oscillatory antinode. The driver signal has, a sinusoidal signal component with a signal frequency, which deviates from each instantaneous eigenfrequency of each natural mode of oscillation of the at least one measuring tube, in each case, by more than 1 Hz and/or by more than 1% of said eigenfrequency.
Abstract:
A flowmeter is disclosed. The flowmeter includes a vibratable flowtube, and a driver connected to the flowtube that is operable to impart motion to the flowtube. A sensor is connected to the flowtube and is operable to sense the motion of the flowtube and generate a sensor signal. A controller is connected to receive the sensor signal. The controller is operable to determine an individual flow rate of each phase within a multi-phase flow through the flowtube.
Abstract:
A multi-gas/gas-mixture or liquid flow sensor apparatus utilizing a specific media calibration capability. The flow sensor can be coupled with an Application Specific Integrated Circuit (ASIC) that incorporates a signal conditioner and a memory module. The signal conditioner provides a high order calibration and signal processing of flow signals from the sensor to a processed signal output representative of the flow. The processed signal output can be stored in the memory module. A correction factor can be calculated and stored in the memory module in response to the stored values of the processed signal output, which tends to linearize the relationship between the flow rate and the processed signal output of a measuring system. The correction factor and/or the processed signal output provided by the signal conditioner can be utilized by the measuring system.
Abstract:
A method of determining the fuel consumption of an internal combustion engine 12, more particularly when operated on a test rig, wherein fuel is supplied in a circuit to the internal combustion engine and discharged therefrom and wherein a quantity of fuel is supplied to the circuit 11 via a branch line 22 from a fuel tank 23 and measured in the branch line, wherein temperature-related changes in the volume of the fuel are determined in the circuit 11 and wherein the consumed quantity {dot over (m)}S determined in the branch line 22 is corrected by a corrective quantity {dot over (m)}K corresponding to the temperature-related changes in volume in the circuit.
Abstract translation:一种确定内燃机12的燃料消耗的方法,特别是当在试验台上操作时,其中燃料在电路中供应到内燃机并从其中排出,并且其中一定数量的燃料供给到电路11 通过来自燃料箱23的分支管线22并在分支管线中测量,其中在电路11中确定燃料的体积中的温度相关的变化,并且其中确定的消耗量{dot over(m)} S 分支线路22通过对应于电路中的体积温度相关变化的校正量{dot over(m)} K来校正。
Abstract:
A multi-gas/gas-mixture or liquid flow sensor apparatus utilizing a specific media calibration capability. The flow sensor can be coupled with an Application Specific Integrated Circuit (ASIC) that incorporates a signal conditioner and a memory module. The signal conditioner provides a high order calibration and signal processing of flow signals from the sensor to a processed signal output representative of the flow. The processed signal output can be stored in the memory module. A correction factor can be calculated and stored in the memory module in response to the stored values of the processed signal output, which tends to linearize the relationship between the flow rate and the processed signal output of a measuring system. The correction factor and/or the processed signal output provided by the signal conditioner can be utilized by the measuring system.
Abstract:
A simple, passive and rugged device for measuring the flow rate of liquid. A variable area obstruction valve, a differential pressure sensor and a densitometer are combined in a single housing to provide for a highly accurate and precise measure of mass flow.
Abstract:
A measuring system for measuring a density of a medium flowing in a process line along a flow axis of the measuring system in the case of a medium which is variable as regards a thermodynamic state, especially a medium which is, at least in part, compressible. The measuring system includes at least one temperature sensor placed at a temperature measuring point, reacting primarily to a local temperature, θ, of medium flowing past, and delivering at least one temperature measurement signal influenced by the local temperature of the medium to be measured; at least one pressure sensor placed at a pressure measuring point, reacting primarily to a local, especially a static, pressure, p, of medium flowing past, and delivering at least one pressure measurement signal influenced by the local pressure, p, in the medium to be measured; as well as a measuring electronics communicating, in each case, at least at times, with the temperature sensor and the pressure sensor. The measuring electronics produces, with application both of the temperature measurement signal as well as also at least the pressure measurement signal, at least at times, at least one density measured-value, especially a digital, density measured-value, representing, instantaneously, a local density, ρ, which the flowing medium has at a virtual density measuring point, especially a locationally fixed, virtual density measuring point, predeterminably spaced from the pressure measuring point and/or from the temperature measuring point, along the flow axis.
Abstract:
A rugged, all-electronic fluid dispensing system for use with pipettes or in other contexts indirectly measures fluid flow by using a non-linear system model to correlate vacuum existing at the top of a column of suspended fluid. Non-contact operation is provided to eliminate the need for contact-type closed-loop fluid flow sensing and associated potential cross-contamination risks. In one particular exemplary non-limiting illustrative implementation, an electronic controller within a gun-shaped, cordless self-contained pipetter housing dynamically calculates valve opening time based on a non-linear equation. Calibration is used to derive equation constants, and column vacuum pressure before the valve is opened is used as the independent variable to derive a valve opening time that will result in accurate dispensing of a desired programmed fluid quantity. Repetitive automatic dispensing with accuracies greater than 1% are possible within the context of a relatively inexpensive portable pipette or device without the need for mechanically-complex positive displacement arrangements.