摘要:
A method of synthetic imaging comprising the steps of: emitting a first electromagnetic signal having a first frequency from a first radiation source, emitting at least one second electromagnetic signal having a second frequency from a second radiation source, wherein the first and second frequencies are different from each other, substantially simultaneously receiving the first signal and the second signal with a first receiver, substantially simultaneously receiving the first signal and the second signal with at least one second receiver, arranging an object on the path of at least one electromagnetic signal between the radiation sources and the receivers, wherein the signals are reflected by the object before they meet the receivers, and computing an image of the object from the signals received by the receivers and a device for practicing the method.
摘要:
A separator for use in a battery may include a primary separator layer, wherein the primary separator layer has a peripheral region and an interior region, and wherein the primary separator layer is configured to conduct electrolyte from the peripheral region to the interior region. The separator may also include a secondary separator layer in fluid communication with the primary separator layer, wherein the secondary separator layer includes a material that is less porous than the primary separator layer and wherein the secondary separator layer is configured to receive electrolyte at least from the interior region of the primary separator layer.
摘要:
The present invention relates to a method of preparing a composition comprising mixing a silica sol having an S-value from about 5 to about 50% and a mineral acid. The invention also relates to a composition obtainable by the method and a composition comprising a network of silica particles and mineral acid, wherein the silica particles have a particle size of from about 2 to about 7 nm. The invention also relates to the use of the composition as a gelled electrolyte.
摘要:
The invention relates to a method and a device for producing an accumulator having a fixed electrolyte. The inventive method is characterized by introducing an electrolyte in a flowable form into the accumulator cell and fixing the electrolyte and forming the active mass simultaneously inside the accumulator cell. The device for carrying out the inventive method comprises a filler head (1), an acid reservoir (3), a thickener reservoir (4), a metering pump for the acid (6.1+6.2), a metering pump for the thickener (5.1+5.2) and a flowmeter for the thickener (9.1+9.2) and the acid (10.1+10.2).
摘要:
FIG. (1) shows a battery generally designated (1), which is a lead-acid battery. The battery (1) includes the components normally found in a GMF (glass microfibre) battery. The battery (1) includes a container or box (2) of tough flame retardant material and positive plates or electrodes (3) comprising lead alloy grids covered with an active material of lead dioxide. In one embodiment of the battery (1), acid gelling material such as silica or the like (for example fumed silica or sodium silicate) is introduced into each GMF separator (5), preferably, during the manufacture of the separator itself. In a second embodiment, a gel is made up outside the separator container, for example, by mixing sodium silicate solution (water glass) and sulphuric acid and the battery is filled with the gel, thus allowing a gel to develop generally uniformly throughout the container and battery.
摘要:
Present invention is related to a liquid low concentration sodium-containing silicate solution as the activation solution for lead-acid storage batteries and an internal activation method. Such an activation solution is prepared by mixing a silica gel containing 40null60 wt % SiO2, the weight units of such a silica gel are 5-15, with 15-25 weight units of water. Adjusting the pH value of this mixture to 1-4 using inorganic acid and magnetizing the mixture in 1000-6000 Gauss magnetic field for 5-10 minutes, and finally obtains a liquid low concentration sodium-containing silicate solution with a viscosity less than 0.02 poise. Fill this activation solution into battery tank and use a charger to activate electrochemically. The operating temperature is room temperature and time is 30-50 hours. Using such an activation solution and procedures described above can avoid the releasing of acid smog and serious environmental pollution and healthy hazard for workers. Attributed to liquid state and good fluidity of the activation solution and not producing heat during activation, the battery as made can be activated within a short time and the rate performance can be improved to 25-30 C.
摘要:
Gel-forming battery separators and methods for constructing them. Particles are embedded into pores of a porous support to form a composite. The chemical make-up of surfaces of the particles includes a silanol group. The composite, when contacted with an effective amount of liquid electrolyte, is capable of forming a gelled matrix that includes electrolyte residing within the porous support. Batteries and methods of forming batteries featuring gel-forming separators are also disclosed. No pre-mixing of siliceous material with electrolyte is required facilitating battery construction.
摘要:
The problem of this invention is based on specifying a process for producing an industrial electrolyte that can be designed in the form of a thixotropic gel in the cells of lead storage batteries, with which large quantities of the liquids needed to fill the lead storage batteries can be prepared and mixed to improve its industrial usability. For the technical solution to this problem, the invention proposes that in the active masses of positive and negative plates in the storage battery cells, the quantity of sulfuric acid necessary to adjust the final acid density of the industrial electrolyte for the ready-to-use storage battery be stored in the form of lead sulfate, while, independently of this, water is set to a pH value from 2 to 4.7 by adding an acid and is then mixed with a gel former.
摘要:
A gel-type storage battery is made by preparing porous electrolyte pads having internal pockets containing a dry powdered gelling agent, and inserting the pad between adjacent battery electrodes before addition of acid. The gelling agent may include acid resistant superabsorbing polymer particles, which cause the pads to swell into intimate contact with the electrodes upon addition of the aqueous acid.
摘要:
A sealed tubular lead-acid battery is provided which offers high-rate discharging performance and long cycle life by loading granules of fine particles of silicon dioxide both in a gap between a separator and around each of a positive and negative plate, as well as around the assembled element comprising a separator and the plates. An electrolyte is retained on the positive plate, the negative plate, the separator, and the granules of fine silicon dioxide particles.