Abstract:
A lubricating oil composition is provided, which comprises a lubricating base oil and based on the whole weight of the lubricating oil composition, (A) 0.5 wt % to 10 wt % of a metal salicylate having a total base number of from 100 mg-KOH/g to 195 mg-KOH/g, (B) 0.1 wt % to 10 wt % of a diarylamine compound, (C) 0.1 wt % to 10 wt % of a hindered phenol compound, and (D) 1 wt % to 10 wt % of a polyalkenylsuccinimide and/or a boron-containing polyalkenylsuccinimide. Also provided is a lubricating oil composition which further comprises 0.1 wt % to 10 wt % of a metal phenate having a total base number of from 100 mg-KOH/g to 300 mg-KOH/g as a component (E) in addition to the above components (A) to (D). The lubricating oil composition is excellent in all properties of detergency, NO.sub.x oxidation resistance and thermal oxidation resistance and suitable as a long-life engine oil for gas engine heat pumps.
Abstract:
In a lead-acid battery, a positive active material includes tin in an amount of from not less than 0.2% to not more than 5% based on the weight thereof. The density of the positive active material after formation is from not less than 3.75 g/cc to not more than 5.0 g/cc. When the lead-acid battery is produced by a battery container formation, a time required between the injection of an electrolyte and the beginning of battery container formation is from not less than 0.1 hours to not more than 3 hours.
Abstract:
In a valve regulated type lead-acid battery, a positive plate includes a positive grid made of Pb—Ca alloy and a positive active material containing Sb in the range of 0.005% to 1.0% both inclusive per weight of the positive active material; wherein a density of the positive active material is not lower than 3.75 g/cc after formation.
Abstract:
In a lead-acid battery, a positive active material includes tin in an amount of from not less than 0.2% to not more than 5% based on the weight thereof. The density of the positive active material after formation is from not less than 3.75 g/cc to not more than 5.0 g/cc. When the lead-acid battery is produced by a battery container formation, a time required between the injection of an electrolyte and the beginning of battery container formation is from not less than 0.1 hours to not more than 3 hours.
Abstract:
A lead acid battery can be obtained which exhibits excellent life properties while keeping the level of self-discharging and electrolyte loss equal to that of those comprising a Pb—Ca alloy collector. In other words, the present invention lies in a positive collector for lead acid battery comprising a substrate and a surface layer made of an alloy composition different from that of the substrate formed on at least a part of the surface of the substrate, characterized in that the substrate is a Sb-free lead alloy or lead and said surface layer is a lead alloy layer comprising one or more metals selected from the group consisting of alkaline metals and alkaline earth metals.
Abstract:
A sealed tubular lead-acid battery is provided which offers high-rate discharging performance and long cycle life by loading granules of fine particles of silicon dioxide both in a gap between a separator and around each of a positive and negative plate, as well as around the assembled element comprising a separator and the plates. An electrolyte is retained on the positive plate, the negative plate, the separator, and the granules of fine silicon dioxide particles.
Abstract:
An improved tubular sealed lead-acid battery is proposed which has superior cycle life performance by providing a gap A between adjacent tubes which gap is expressed by the following equation, in which constant X is within the range of 0.29-0.75:A=B.times.constant X.times.(1.1-0.1.times.E)-2.times.C.times.DwhereA: the gap between the tubes (mm)B: the inside radius of the tube (mm)C: the thickness of the tube (mm)D: the porosity of the tube (%).times.0.01E: the inter-electrode distance (mm).