Abstract:
Driving circuitry having driving means for driving a load using a first DC voltage, regulator means for receiving an input voltage and deriving a regulated output voltage from the input voltage, and power source switch means switchable between a first state in which the first DC voltage is supplied to the regulator means as the input voltage and a second state in which a second DC voltage, lower than the first DC voltage and higher than the regulated output voltage, is supplied to the regulator means as the input voltage, second voltage deriving means for deriving the second DC voltage from the first DC voltage, and switch control means connected to the power source switch means for causing the power source switch means to switch from the first state to the second state when the second DC voltage is suitable for supply to the regulator means as the input voltage.
Abstract:
An integrated circuit device has a digital device operating at an internal core voltage; a linear voltage regulator; and an internal switched mode voltage regulator controlled by the digital device and receiving an external supply voltage being higher than the internal core voltage through at least first and second external pins and generating the internal core voltage, wherein the internal switched mode voltage regulator is coupled with at least one external component through at least one further external pin of the plurality of external pins.
Abstract:
A DC power supply (1) having a series regulator (2) for generating a fixed output DC voltage (VCC) at a variable input AC voltage (VAC) with low power loss. For this purpose, the DC power supply (1, 101, 201, 301) has a transformer (3, 103) having at least two auxiliary windings (W1, W2) having different numbers of windings that can each be connected via a switching device (4, 104, 204, 304) to the series regulator (2). Switching is effected such that the power loss is kept as low as possible.
Abstract:
A method is provided. A low dropout regulator (LDO) is disabled during a first mode, and a first reference voltage is selected and applied to a switched-mode converter during the first mode. Also during the first mode, a first output voltage is generated by the switched-mode converter from a power supply, and a first capacitor is overcharged with the first output voltage. The LDO is then enabled during a second mode. During a first portion of a startup period for the second mode, a second capacitor is charged from the first capacitor, and a second reference voltage is selected and applied to the switched-mode converter. Then, during a second portion of the startup period for the second mode, the second capacitor is charged with the switched-mode converter.
Abstract:
A solar module has a solar cell which generates a DC voltage. The module has a converter for converting a DC voltage fed into its input. The module contains a semiconductor switch and a controller which drives a switching input of the semiconductor switch. The controller drives the semiconductor switch variably so that the semiconductor switch switches more slowly during the transition operation than during normal operation, thereby reducing a dynamic overvoltage on the switch such that the voltage present on the switch does not exceed the blocking voltage of the switch.
Abstract:
A power supply control device includes a boost type power supply controller boosting an input voltage, a step down power supply controller reducing an output of the boost type power supply controller to output an output voltage, a first control loop including the boost type power supply controller, and a second control loop including the step down power supply controller, wherein the output voltage is controlled by the second control loop during a predetermined period beginning after the power supply control device enters a power-on state, and wherein the output voltage is controlled by the first control loop after the predetermined period passes.
Abstract:
A voltage transformer (10) comprises an inductor (11), a first and a second switch (15, 16), and a control unit (25). A first terminal (12) of the inductor is supplied an input voltage (VIN). The first switch (15) is disposed between a second terminal (13) of the inductor (11) and a reference potential terminal (17). The second switch (16) is disposed between the second terminal (13) of the inductor (11) and an output (19) of the voltage transformer (10). The control unit (25) is configured to set the first switch (15) in a first and a second phase (A, B) of a first operating mode of the voltage transformer (10) into a blocking operating state and to set the second switch (15) in the first phase (A) into a conducting operating state and in the second phase (B) into an operating state having different conductivity.
Abstract:
A controller for use in a power converter includes a control circuit to be coupled to a current controller coupled to an energy transfer element. A first, second or third current is enabled in the current controller in response to the control circuit. The first current is substantially zero, the second current is greater than the third current, and the third current is greater than the first current. The third current only partially discharges a capacitance coupled to a terminal coupled between the energy transfer element and the current controller. A first feedback circuit coupled to the control circuit generates a first feedback signal after a full discharge pulse of current through the current controller. A second feedback circuit coupled to the control circuit generates a second feedback signal after a partial discharge pulse of current through the current controller.
Abstract:
A power supply circuit and a method for operating a power supply circuit involves selecting a normal operational mode or a pass-through operational mode for a switched mode power supply, in the normal operational mode, converting an input voltage of a power supply circuit to an intermediate voltage using a switching regulator of the switched mode power supply, in the pass-through operational mode, disabling the switching regulator such that the input voltage of the power supply circuit is unchanged by the switching regulator and an electric current consumption of the switching regulator approaches zero, and converting the intermediate voltage or the input voltage of the power supply circuit to an output voltage using a linear voltage regulator.
Abstract:
A power supply that is capable of supplying power to an input/output channel for an Industrial Process Control System. The power supply includes a primary voltage converter having a first voltage input and a second voltage output, and overvoltage protection components that prevent the second voltage from rising above a predetermined maximum. The power supply includes a first low dropout regulator that is connected to receive the second voltage and to generate a third voltage, a second low dropout regulator that is connected to receive the second voltage and to generate a fourth voltage, and a third low dropout regulator that is connected to receive the fourth voltage and to generate a fifth voltage. The power supply provides an over-voltage fault tolerant self-testable architecture, allows for compact low cost individual channel isolation and fault tolerant EMI/RFI filtration.