Abstract:
Devices and methods for a detection system and heterodyne mixer having a local oscillator (LO) input, a radio frequency (RF) input, an intermediate frequency (IF) output, and a suspended waveguide structure that has a quartz substrate and patterned metal transmission line with a plurality of suppression slots.
Abstract:
A sub-harmonic mixer comprising first and second input ports, and an output port, and arranged to output products of signals applied at the input ports. The sub-harmonic mixer comprises a first stage a second stage arranged in series with each other, with the input ports of the sub-harmonic mixer being input ports of the first stage, and the output port of the sub-harmonic mixer being an output port of the second stage. An output port of the first stage is connected to an input port of the second stage. The first stage is arranged to generate a fundamental product and a first third order intermodulation distortion product in-phase with each other. The second stage is arranged to generate a second third order intermodulation distortion product in anti-phase to the fundamental product generated by the second stage.
Abstract:
A logarithmic amplifier (LDA) is described that includes an amplifier configured to oscillate a modulated input signal, a feedback establishing a 180 degree phase shift between the amplifier input and the output and maintaining oscillation of the input signal, a parallel resonant circuit connected to the amplifier output causing the amplifier to resonate at or around a center frequency, and a controller connected to the amplifier input cyclically terminating oscillation of the input signal each time a pre-determined threshold of current is detected, the controller including a low pass filter configured to generate a second output signal having a repetition frequency. The LDA may be used for AM with or without a PLL and/or a superhetrodyne. The LDA may be implemented as a mixer and used for phase demodulation. The LDA may be used for phase demodulation. The LDA may be used in place of a low noise amplifier.
Abstract:
A logarithmic amplifier (LDA) is described that includes an amplifier configured to oscillate a modulated input signal, a feedback establishing a 180 degree phase shift between the amplifier input and the output and maintaining oscillation of the input signal, a parallel resonant circuit connected to the amplifier output causing the amplifier to resonate at or around a center frequency, and a controller connected to the amplifier input cyclically terminating oscillation of the input signal each time a pre-determined threshold of current is detected, the controller including a low pass filter configured to generate a second output signal having a repetition frequency. The LDA may be used for AM with or without a PLL and/or a superhetrodyne. The LDA may be implemented as a mixer and used for phase demodulation. The LDA may be used for phase demodulation. The LDA may be used in place of a low noise amplifier.
Abstract:
A receiving device includes a dividing circuit, N pieces of internal circuits, and an averaging circuit. The dividing circuit is configured to divide an input signal into N pieces of divided signals (where N is an integer of two or larger), and the N pieces of internal circuits are configured to receive and process the N pieces of divided signals. The averaging circuit is configured to receive N pieces of output signals from the N pieces of internal circuits, averaging the output signals, and output an averaged signal.