摘要:
Provided is a receiver including an oscillator (OSC) configured to generate an oscillation signal based on a radio signal, a clocked envelope detector (ED) configured to detect an envelope of the oscillation signal and hold a peak value of the envelope during a time interval, and an analog-to-digital converter (ADC) configured to convert the peak value of the envelope into a digital signal.
摘要:
Provided is a receiver including an oscillator (OSC) configured to generate an oscillation signal based on a radio signal, a clocked envelope detector (ED) configured to detect an envelope of the oscillation signal and hold a peak value of the envelope during a time interval, and an analog-to-digital converter (ADC) configured to convert the peak value of the envelope into a digital signal.
摘要:
A regenerative selective logarithmic detector amplifier (LDA) can have integrated FM demodulation capabilities. It can receive a wired or wireless FM modulated signal and amplify or demodulate it with high sensitivity, high skirt ratio and minimized noise when compared to the prior art. When used in conjunction with other circuits such as a PLL or mixer, it can improve interference rejection and frequency selectivity and be locked on a precise channel in frequency and phase. The LDA produces intermittent oscillations that are self-quenched when reaching a given threshold. It also embeds the circuitry to perform direct FM discrimination. FM demodulation process is completed by a simple analog or digital frequency to voltage converter. This plus the fact that the instantaneous regeneration gain is low-medium permit to detect signals of small amplitudes buried in the noise.
摘要:
A regenerative selective logarithmic detector amplifier (LDA) can have integrated FM demodulation capabilities. It can receive a wired or wireless FM modulated signal and amplify or demodulate it with high sensitivity, high skirt ratio and minimized noise when compared to the prior art. When used in conjunction with other circuits such as a PLL or mixer, it can improve interference rejection and frequency selectivity and be locked on a precise channel in frequency and phase. The LDA produces intermittent oscillations that are self-quenched when reaching a given threshold. It also embeds the circuitry to perform direct FM discrimination. FM demodulation process is completed by a simple analog or digital frequency to voltage converter. This plus the fact that the instantaneous regeneration gain is low-medium permit to detect signals of small amplitudes buried in the noise.
摘要:
A logarithmic amplifier (LDA) is described that includes an amplifier configured to oscillate a modulated input signal, a feedback establishing a 180 degree phase shift between the amplifier input and the output and maintaining oscillation of the input signal, a parallel resonant circuit connected to the amplifier output causing the amplifier to resonate at or around a center frequency, and a controller connected to the amplifier input cyclically terminating oscillation of the input signal each time a pre-determined threshold of current is detected, the controller including a low pass filter configured to generate a second output signal having a repetition frequency. The LDA may be used for AM with or without a PLL and/or a superhetrodyne. The LDA may be implemented as a mixer and used for phase demodulation. The LDA may be used for phase demodulation. The LDA may be used in place of a low noise amplifier.
摘要:
A logarithmic amplifier (LDA) is described that includes an amplifier configured to oscillate a modulated input signal, a feedback establishing a 180 degree phase shift between the amplifier input and the output and maintaining oscillation of the input signal, a parallel resonant circuit connected to the amplifier output causing the amplifier to resonate at or around a center frequency, and a controller connected to the amplifier input cyclically terminating oscillation of the input signal each time a pre-determined threshold of current is detected, the controller including a low pass filter configured to generate a second output signal having a repetition frequency. The LDA may be used for AM with or without a PLL and/or a superhetrodyne. The LDA may be implemented as a mixer and used for phase demodulation. The LDA may be used for phase demodulation. The LDA may be used in place of a low noise amplifier.
摘要:
A high frequency super regenerative direct detector includes a power supply and a signal detecting circuit arrangement electrically connected thereto. The signal detecting circuit arrangement, which is a transistor control system, includes a high frequency by-pass circuit, a LC tank circuit configured to be tuned at a pre-tuned frequency to receive an incoming signal to generate an oscillator frequency, ranging from 850 MHz to 960 MHz, a quenching circuit generating a quenching frequency, and a transistor circuit device configured to incorporate oscillator frequency into the quenching frequency in such a manner that when the incoming signal matches the pre-tuned frequency, a timing to achieve a saturated level of the quenching frequency is faster than no signal period, and a modulation frequency of the incoming signal is detected out from the signal detecting circuit arrangement.
摘要:
A digital super-regenerative receiver has an analog RF detector and a regenerative oscillator. An output signal of the analog RF detector is used to generate a digital signal from which an oscillator bias is adjusted in order to maintain the oscillator start-up time at a fixed level. The circuit senses through the use of a multi-level threshold detector if the start-up time is earlier or later than the predetermined start-up time and produces an output signal when the majority of the start times are ahead of the expected start time.
摘要:
The present disclosure provides a super-regenerative transceiver with a feedback element having a controllable gain. The super-regenerative transceiver utilizes the controllable gain to improve RF signal data sensitivity and improve RF signal data capture rates. Super-regenerative transceivers described herein permit signal data capture over a broad range of frequencies and for a range of communication protocols. Super-regenerative transceivers described herein are tunable, consume very little power for operation and maintenance, and permit long term operation even when powered by very small power sources (e.g., coin batteries).
摘要:
A logarithmic amplifier (LDA) is described that includes an amplifier configured to oscillate a modulated input signal, a feedback establishing a 180 degree phase shift between the amplifier input and the output and maintaining oscillation of the input signal, a parallel resonant circuit connected to the amplifier output causing the amplifier to resonate at or around a center frequency, and a controller connected to the amplifier input cyclically terminating oscillation of the input signal each time a pre-determined threshold of current is detected, the controller including a low pass filter configured to generate a second output signal having a repetition frequency. The LDA may be used for AM with or without a PLL and/or a superhetrodyne. The LDA may be implemented as a mixer and used for phase demodulation. The LDA may be used for phase demodulation. The LDA may be used in place of a low noise amplifier.