Abstract:
An audio coding device includes a time-to-frequency converter that performs time-to-frequency conversion on each frame of a signal in at least one channel included in an audio signal in a predetermined length of time in order to convert the signal in the at least one channel to a frequency signal; a complexity calculator that calculates complexity of the frequency signal for each of the at least one channel. The audio further includes a bit allocation controller that determines a number of bits to be allocated to each of at least one channel so that more bits are allocated to the each of the at least one channel as the complexity of the each of at least one channel increases, and increases the number of bits to be allocated as an estimation error in the number; and a coder that codes the frequency signal.
Abstract:
A data compression/decompression apparatus, for example, acquires sampling data obtained by sampling an audio signal with a predetermined period, and converts the sampling data into frequency domain data. The data compression/decompression apparatus divides a data sequence of the converted frequency domain data into a plurality of blocks such that the number of pieces of data included in each block is variable, and compresses each block.
Abstract:
A noise filler for providing a noise-filled spectral representation of an audio signal on the basis of an input spectral representation of the audio signal has a spectral region identifier configured to identify spectral regions of the input spectral representation spaced from non-zero spectral regions of the input spectral representation by at least one intermediate spectral region, to obtain identified spectral regions, and a noise inserter configured to selectively introduce noise into the identified spectral regions to obtain the noise-filled spectral representation of the audio signal. A noise filling parameter calculator for providing a noise filling parameter on the basis of a quantized spectral representation of an audio signal has a spectral region identifier, as mentioned above, and a noise value calculator configured to selectively consider quantization errors of the identified spectral regions for a calculation of the noise filling parameter. Accordingly, an encoded audio signal representation representing the audio signal can be obtained.
Abstract:
The present invention relates to an encoding device and an encoding method, a decoding device and a decoding method, and a program that reduce deterioration of sound quality due to encoding of audio signals.An envelope emphasis part (51) emphasizes an envelope (ENV). A noise shaping part (52) divides an emphasized envelope (D) formed by emphasis of the envelope (ENV) by a value larger than 1, and subtracts noise shaping (G) specified by information (NS) from a result of the division. A quantization part (14) sets a result of the subtraction as a quantization bit count (WL), and quantizes a normalized spectrum (S1) formed by normalization of a spectrum (S0) based on the quantization bit count (WL). A multiplexing part (53) multiplexes the information (NS), a quantized spectrum (QS) formed by quantization of the normalized spectrum (S1), and the envelope (ENV). The present invention can be applied to an encoding device encoding audio signals, for example.
Abstract:
The present invention provides a new method and an apparatus for spectral envelope encoding. The invention teaches how to perform and signal compactly a time/frequency mapping of the envelope representation, and further, encode the spectral envelope data efficiently using adaptive time/frequency directional coding. The method is applicable to both natural audio coding and speech coding systems and is especially suited for coders using SBR [WO 98/57436] or other high frequency reconstruction methods.
Abstract:
In an audio signal processing circuit for carrying out a subband coding used for an audio signal coding, a subband filter (12A) receives 1152 audio samples (SI) of each one frame and divides the samples into 32 frequency bands to sequentially output a vector of first half subband signals (SFA) for a first half of the one frame and a vector of second half subband signals (SFB) for a second half of the one frame. A FFT circuit (111A) carries out an FFT processing for 512 audio samples of each of the first half and the second half of each one frame, to sequentially generate a first half power spectrum (PSA) and a second half power spectrum (PSB). A calculating circuit (113A) calculates a first half SMR vector (SMA) on the basis of the first half subband signals (SFA) and the first half power spectrum (PSA), and then, a second half SMR vector (SMB) on the basis of the second half subband signals (SFB) and the second half power spectrum (PSB). A comparing circuit (115) outputs a larger one of the first half SMR vector (SMA) and the second half SMR vector (SMB), as an SMR vector (SM) for the whole of a corresponding one frame.
Abstract:
This quantization scale factor determination device is provided with a correction circuit which corrects an initial value of a quantization scale factor on the basis of whether or not an audio signal spectrum is sparse, and a search circuit which searches for a quantization scale factor on the basis of the initial value.
Abstract:
An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
Abstract:
An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
Abstract:
Embodiments relate to an audio processing unit that includes a buffer, bitstream payload deformatter, and a decoding subsystem. The buffer stores at least one block of an encoded audio bitstream. The block includes a fill element that begins with an identifier followed by fill data. The fill data includes at least one flag identifying whether enhanced spectral band replication (eSBR) processing is to be performed on audio content of the block. A corresponding method for decoding an encoded audio bitstream is also provided.