摘要:
An apparatus is provided for sealing a channel fluidly connecting between a high pressure zone and a low pressure zone. The apparatus has at least two brush seal elements provided in the channel in series in a direction from the high pressure zone toward the low pressure zone to define an intermediate zone between the brush seal elements. The intermediate zone is fluidly connected to the low pressure zone through a bypass or passage, allowing a fluid in the intermediate zone to flow in part through the bypass to the low pressure zone.
摘要:
A stationary crankshaft, cylindrical rotor, low friction, adjustable timing, pistonless, rotary internal combustion engine. A cylindrical rotor rotates freely about a stator, also cylindrical in shape. A plurality of cavities are circumferentially disposed along the external circumference of the stator and the internal circumference of the rotor that, when rotationally aligned, form combustion chambers. Rotation of the rotor is induced by electrical-spark induced combustion of a fuel/air mixture in the combustion chambers. The combustive exhaust is vented into an exhaust manifold for transport to an exhaust disposal system, such as a catalytic converter. Cooling, fuel pressurization, and electrical generation can be internal to the engine or supplied externally. Engine speed, torque, and other operational requirements can be accommodated by coupling multiple rotational units together and engine vibration can be virtually eliminated by offsetting the combustion chambers on coupled units.
摘要:
According to one aspect of the invention, a turbine combustor includes an outer member coupled to a wall of the combustor, wherein there is at least one damping hole formed in outer member. The turbine combustor further includes at least one temperature control hole formed in the wall wherein the at least one temperature control hole is formed at an angle with respect to a line perpendicular to a hot gas path in the combustor.
摘要:
A gas turbine combustor (26) disposed in a combustion air plenum (65) and a transition piece (28) for the combustor disposed in a separate cooling air plenum (58, 67). The combustion air plenum may receive combustion air (50) from a high-pressure compressor stage (22A). The cooling air plenum may receive cooling air (52) from an intermediate-pressure compressor stage (22B) at lower temperature and pressure than the combustion air. This cools the transition piece using less air than prior systems, thus making the gas turbine engine (20) more efficient and less expensive, because less expensive materials are needed and/or higher combustion temperatures are allowed. The cooling air may exit the cooling air plenum through holes (62) in a downstream portion (61) of the transition piece. An outer wall (72) on the transition piece may provide forced convection along the transition piece.
摘要:
A system, in one embodiment, includes a turbine engine. The turbine engine includes a combustor that includes a hollow annular wall having a combustor liner. The turbine engine also includes first flow path in a first direction through the hollow annular wall. The turbine engine further includes a second flow path in a second direction that is opposite the first direction through the hollow annular wall. The second flow path may include one or more film holes configured to supply a cooling film to a downstream end portion of the combustor liner.
摘要:
The present application and the resultant patent provide a mixing joint for adjacent can combustors. The mixing joint may include a first can combustor with a first combustion flow and a first wall, a second can combustor with a second combustion flow and a second wall, and a flow disruption surface positioned about the first wall and the second wall to promote mixing of the first combustion flow and the second combustion flow.
摘要:
A rotary engine includes a rotor having one or more combustion chambers connected to an exhaust passageway extending radially outward from the combustion chamber to an exhaust port adjacent a peripheral edge of the rotor. The exhaust gas is expelled at an angle to thereby generate cause the rotor to rotate. The housing may include reflective surfaces that reflect shockwaves from the exhaust gas back towards vanes on the rotor to thereby capture additional energy from the exhaust gas. The housing may also include stators that capture additional energy from the exhaust gas and rotate the rotor. An intake port fluidly connected to the combustion chamber is aligned with an opening in the housing as the rotor rotates to thereby allow comprised air to flow into the combustion chamber. As the combustion chamber rotates, it is closed off by a closed portion of the housing, fuel is injected, and ignited, to thereby generate exhaust gases and generate power. The engine does not include reciprocating components, and relatively few moving parts are required.
摘要:
An air cooling hood offset from an exterior of the transition piece to define an air cooling passage between the air cooling hood and the exterior of the transition piece, wherein the air cooling hood comprises a plurality of air outlets disposed along the exterior of the transition piece, and the plurality of air outlets is configured to expel an airflow from the air cooling passage away from the exterior of the transition piece.
摘要:
A method for determining wind turbine location within a wind power plant based on at least one design criteria. A wind turbine layout including at least one wind turbine location is prepared and site conditions at each wind turbine location are determined. One or more plant design metrics are evaluated in response to the site conditions. The plant design metrics are analyzed in response to the site conditions. The method further includes applying constraints to the wind turbine layout and comparing the plant design metrics to the design criteria and constraints. Thereafter, the wind turbine locations are selectively adjusted within the layout in response to the comparing step until a stop criteria is reached.
摘要:
A combustor assembly of a turbine engine is provided with a mechanical air regulation unit which selectively varies the amount of air being delivered into a combustion zone of the combustor based upon a pressure of a fuel being supplied to the combustor. A first type of air regulation unit would act to increase the amount of air entering the combustion zone when greater amounts of a high heat value fuel are being delivered to the fuel nozzles of the combustor. A second type of air regulation unit could act to decrease the amount of air entering the combustion zone when greater amounts of a low heat value fuel are being delivered into the combustor through fuel nozzles.