Abstract:
A headset system for use with especially in a call center environment, in which method a wireless connection is established between headset and base unit, and the wireless connection is maintained while indicating from a headset user interface to the base unit that the headset is available for receiving an incoming call. The headset system is connected to a telephone system and has a processor configured to receive mode information and to operate according to the received mode information. The headset has a headset user interface and controls the headset signal processor to operate in accordance with user input. The headset is further configured to provide the end-of-call information to the base unit while maintaining the wireless connection.
Abstract:
A method and apparatus e.g. a headset or a base station for controlling channel selection in a communications system (400) using a DECT communications protocol, wherein multiple predefined channels are established using multiple carrier signals at respective carrier frequencies (F1, F2, . . . F8); comprising: transmitting (205) a first signal (S1) on multiple of the channels using automatic channel selection; transmitting a first signal and a second signal on multiple of the channels using automatic channel selection; setting a power level of carrier signals in a first group of channels to a first power level and setting a power level of carrier signals in a second group of channels to a second power level; wherein the second power level is preferably/deliberately set to a predetermined power level higher than the first power level. Wherein the first signal is transmitted in accordance with a first transmission scheme, wherein channel selection is restricted to the channels in the first group of channels, and the second signal is transmitted in accordance with the second transmission scheme, wherein channel selection is restricted to the channels in the second group of channels.
Abstract:
A headset system (1) comprising a first telecommunication device (3) comprising a desk phone or a computer (4) with an installed softphone, a second telecommunication device, such as a mobile phone or a smart phone (6), and a headset (2) comprising a cord (5) with a first connector (7), by means of which the headset (2) is adapted to be interchangeably connected to the first telecommunication device (3) and the second telecommunication device (6). The headset system (1) is adapted to transfer a call from the first telecommunication device (3) to the second telecommunication device (6), when the first connector (7) is unplugged from the first telecommunication device (3). The invention also relates to An external device (8) comprising a second connector (31) to be attached to a first connector (7) of a headset (2), means (9, 10) for connecting the external device (8) to a personal computer (4) with a softphone installed on it, a controller (36) adapted to send a call transfer control signal to the softphone, when the first connector (7) is unplugged from the second connector (31), whereby an active call on the first telecommunication device (4) is transferred to a second telecommunication device (6).
Abstract:
The present invention relates to a method for attenuating undesired content in an audio signal and to an apparatus adapted to attenuate undesired content in an audio signal. The invention may be used to reduce adverse effects on a user caused by undesired or potentially harmful audio signals received from an audio communication network, such as e.g. a telephone network, and may advantageously be implemented in headsets and other audio communication apparatus that can receive audio signals from an audio communication network and provide corresponding sound signals to one or more users.The present invention provides a method for attenuating undesired content in an audio signal. The method comprises: receiving an audio input signal (Si); providing a main audio signal (Sa) in dependence on the audio input signal (Si); determining an input level signal (Ln) indicating a signal level (Ln,i) of the main audio signal (Sa) for each of multiple frequency subbands; applying a frequency-dependent gain to the main audio signal (Sa) to provide an audio output signal (So); providing an analysis signal (Sn) in dependence on the audio input signal (Si); determining a classification signal (Sc) indicating the presence in the analysis signal (Sn) of one or more audio signals belonging to a first predefined audio signal class; determining a threshold control signal (St) indicating a frequency-dependent level threshold (72, 75, 76, Tf) for multiple frequency subbands in dependence on the classification signal (Sc); and determining the frequency-dependent gain in dependence on signal levels (Ln,i) indicated by the input level signal (Ln) and the frequency-dependent level threshold (72, 75, 76, Tf) indicated by the threshold control signal (St). The method is characterized in that the frequency dependency of the frequency-dependent level threshold (72, 75, 76, Tf) indicated by the threshold control signal (St) depends on the classification signal (Sc).This may provide an improved method for attenuating undesired content in an audio signal.