Abstract:
According to one embodiment, a laser drive circuit includes a photodetector which receives part of laser light emitted from a laser element to a recording medium independently of reflection laser light reflected by the recording medium, and outputs an output corresponding to the strength thereof, an integration circuit which integrates the output from the photodetector for a predetermined time, and a setting circuit which sets the intensity of a laser drive current supplied to the laser element on the basis of the output from the integration circuit.
Abstract:
An information layer 0 comprises a system lead-in area, data lead-in area, data area, and middle area, an information layer 1 comprises a system lead-out area, data lead-out area, data area, and middle area, an end position of the data area of layer 1 is positioned outer than a start position of the data area of layer 0, the data lead-in area comprises a guard track zone wider than a test zone in the data lead-out area, the data lead-out area comprises a guard track zone wider than a test zone and a management zone in the data lead-in area, the middle area of layer 0 comprises a guard track zone wider than a test zone in the middle area of layer 1, and the middle area of layer 1 comprises a blank zone wider than a test zone in the middle area of layer 0.
Abstract:
This invention achieves high-density recording while preventing recording units from overlapping. Recording is done to form a gap between predetermined recording units. Since this gap is formed, even when a rotation driving mechanism of a medium suffers rotation nonuniformity, two neighboring recording units never overlap each other, and destruction of recording data can be prevented.
Abstract:
An information layer 0 comprises a system lead-in area, data lead-in area, data area, and middle area, an information layer 1 comprises a system lead-out area, data lead-out area, data area, and middle area, an end position of the data area of layer 1 is positioned outer than a start position of the data area of layer 0, the data lead-in area comprises a guard track zone wider than a test zone in the data lead-out area, the data lead-out area comprises a guard track zone wider than a test zone and a management zone in the data lead-in area, the middle area of layer 0 comprises a guard track zone wider than a test zone in the middle area of layer 1, and the middle area of layer 1 comprises a blank zone wider than a test zone in the middle area of layer 0.
Abstract:
This invention achieves high-density recording while preventing recording units from overlapping. Recording is done to form a gap between predetermined recording units. Since this gap is formed, even when a rotation driving mechanism of a medium suffers rotation nonuniformity, two neighboring recording units never overlap each other, and destruction of recording data can be prevented.
Abstract:
User data recording areas and intermediate areas are alternately arranged on a disk. The intermediate area records at least information for synchronization.
Abstract:
The refractive index of a light transmission layer of an optical disk is set within the range of 1.45 to 1.75, the numerical aperture of a lens emitting laser light which is incident onto the light transmission layer is set to 0.65, and the wavelength range of the laser light is set within the range of 395 to 415 nm. Further, in order that aberrations fall within the range of certain acceptable values, the thickness t of the light transmission layer is set within the range of f(n)−t1≦t≦f(n)+t2, employing constants t1, t2 determined based on an acceptable value of aberration and function f(n) of the refractive index n.
Abstract:
According to one embodiment, an optical pickup according to the present invention has a servo circuit in which, when Tp is a track pitch of an optical disk, NA is the numerical aperture of an objective lens, and Fp is a detection range of a focus error, a focus detection range defined in a range of 2Tp/(NA×Fp)
Abstract:
This invention achieves high-density recording while preventing recording units from overlapping. Recording is done to form a gap between predetermined recording units. Since this gap is formed, even when a rotation driving mechanism of a medium suffers rotation nonuniformity, two neighboring recording units never overlap each other, and destruction of recording data can be prevented.
Abstract:
An optical disc apparatus of the invention in its broader aspects, by locating, at a position displaced a predetermined distance from the focal point of a condenser lens, a light-receiving surface of a photodetector for receiving a laser beam reflected from first and second recording layers of an optical disc, is configured, when playing back a signal from a certain recording layer, to decrease the difference in a crosstalk caused by a light reflected from other recording layers.