Abstract:
The present technology is generally directed to systems and methods for controlling air distribution in a coke oven. In a particular embodiment, a coke oven air distribution system comprises an oven chamber having an oven floor configured to support a coal bed, a plurality of sidewalls extending upward from the oven floor, and an oven crown covering a top portion of the oven chamber. The air distribution system further includes an air inlet positioned above the oven floor and a distributor proximate to the inlet. The inlet is configured to introduce air into the oven chamber and the distributor is configured to at least one of preheat, redirect, or spread air within the oven chamber.
Abstract:
Production systems and methods for producing pellets or pellet products, which can be used, e.g., in an electric arc furnace (EAF) to produce metal alloys, are disclosed herein. In some embodiments, a method for forming coke pellets includes (i) blending biomass with a set of materials to form an input blend, (ii) preconditioning the input blend by hydrating the input blend to generate a first plurality of particles, (iii) charging the first plurality of particles into an oven to produce a second plurality of particles via pyrolysis, (iv) post-conditioning the second plurality of particles to produce a third plurality of particles by exposing the second plurality of particles to at least one of an amphipathic binder, a hydrophobic binder, or a hydrophilic binder, and (v) physically altering the third plurality of particles to form coke pellets. The biomass can have a first volatility and the set of materials can have a second volatility lower than the first volatility.
Abstract:
Systems, devices and methods for screening materials or industrial products, such as foundry coke, are disclosed herein. In some embodiments, representative systems and/or devices can include (i) a plurality of screening members each extending along a first axis, wherein the screening members are configured to make contact with a material to be screened, (ii) a plurality of elevating members extending along the first axis, wherein individual elevating member are coupled to a lower portion of corresponding individual screening members, and (iii) a cross support extending along a second axis angled relative to the first axis, wherein the cross support is coupled to a lower portion of at least some of the elevating members.
Abstract:
Methods and systems for coking coal blends to produce foundry coke products are disclosed herein. Methods for producing coke products can include charging a coal blend into a coke oven; and heating the charged coal blend such that a crown temperature of the coke oven is greater than a lower bound coking temperature. The pyrolysis duration begins when the crown temperature of the oven is greater than the lower bound coking temperature, and ends when the crown temperature of the oven is less than the lower bound coking temperature.
Abstract:
Processing granulated metallic units within electric arc furnaces (EAFs) and associated systems, devices, and methods are disclosed herein. A representative method can include receiving granulated metallic units in an EAF, wherein the granulated metallic units comprise no more than 0.05 wt. % of sulfur and at least 50% of particles in the granulated iron material have a particle size of at least 6 millimeters. The method can include applying electrical energy to the granulated iron via electrodes and melting the granulated iron material to form a molten steel product. The method can also include tapping the EAF to remove the molten steel product from the EAF.
Abstract:
A coke oven includes an oven chamber, an uptake duct in fluid communication with the oven chamber, the uptake duct being configured to receive exhaust gases from the oven chamber, an uptake damper in fluid communication with the uptake duct, the uptake damper being positioned at any one of multiple positions, the uptake damper configured to control an oven draft, an actuator configured to alter the position of the uptake damper between the positions in response to a position instruction, a sensor configured to detect an operating condition of the coke oven, wherein the sensor includes one of a draft sensor, a temperature sensor configured to detect an uptake duct temperature or a sole flue temperature, and an oxygen sensor, and a controller being configured to provide the position instruction to the actuator in response to the operating condition detected by the sensor.
Abstract:
Coal blends used to produce foundry coke products are disclosed herein. Coal blends can include first coals having a first volatile matter mass fraction less than or equal to a first threshold, and second coals having a second volatile mass fraction greater than or equal to a second threshold that is less than the second threshold. The coal blend can have an ash fusion temperature less than 2600° F. and an aggregated volatile matter mass fraction between 15% and 25%.
Abstract:
Mixture products containing charred products and coal or coke, and associated systems, devices and methods are disclosed herein. The charred product components of the mixture products can be made by receiving an input material in an oven, and heating the oven containing the input material to a predetermined temperature of at least 900° F. for a predetermined time of no more than 48 hours to produce a charred product. Advantageously, embodiments of the present technology can enable a more efficient mixture product production process. The resulting mixture products can also have higher quality in terms of desired Coke Strength After Reaction (CSR), Coke Reactivity Index (CRI), volatile matter content, ash content, sulfur content, grain size, etc.
Abstract:
Methods and systems for coking coal blends to produce foundry coke products are disclosed herein. Methods for producing coke products can include charging a coal blend into a coke oven; and heating the charged coal blend such that a crown temperature of the coke oven is greater than a lower bound coking temperature. The pyrolysis duration begins when the crown temperature of the oven is greater than the lower bound coking temperature, and ends when the crown temperature of the oven is less than the lower bound coking temperature.
Abstract:
A coke product configured to be used in foundry cupolas to melt iron and produce cast iron products is disclosed herein. In some embodiments, the coke product has a Coke Reactivity Index (CRI) of at least 30% and an ash fusion temperature (AFT) less than 1316° C. Additionally or alternatively, the coke product can comprise (i) an ash content of at least 8.0%, (ii) a volatile matter content of no more than 1.0%, (iii) a Coke Strength After Reaction (CSR) of no more than 40%, (iv) a 2-inch drop shatter of at least 90%, and//or (v) a fixed carbon content of at least 85%.