Abstract:
A color filter substrate, an array substrate and a display device are disclosed. The display device includes an opposed substrate and an array substrate, or an opposed substrate, an array substrate and a protection substrate located on a side of the opposed substrate that is apart from the array substrate. The display device is divided into a display area and a periphery area, at least one layer of periphery touch electrode is provided in the periphery area, the at least one layer of periphery touch electrode is disposed on at least one of the array substrate, the opposed substrate and the protection substrate. The display device can alleviate the problem of impacting viewing effects due to touch operation on the display area.
Abstract:
A display panel includes a sub-pixel array and a plurality of photosensitive units. The sub-pixel array includes a first sub-pixel, a second sub-pixel and a third sub-pixel that are capable of emitting light of different colors. The plurality of photosensitive units are disposed under gaps of the sub-pixel array. Each of the plurality of photosensitive units includes a photosensitive device, and the photosensitive device includes a photosensitive layer; and an orthographic projection of the photosensitive layer in the photosensitive device on a panel surface of the display panel has overlapping regions with orthographic projections of the first sub-pixel, the second sub-pixel and the third sub-pixel on the panel surface of the display panel
Abstract:
A display panel and a display apparatus. The display panel includes: an array substrate, including: scanning lines, data lines and sub-pixels, where at least two sub-pixels adjacent in a first direction and a second direction constitute a pixel island; an opposing substrate; a liquid crystal layer; and supporting parts, including a plurality of first supporting parts and a plurality of second supporting parts. Each supporting part includes: a first sub-supporting part and a second sub-supporting part; orthographic projections of the first sub-supporting parts divide orthographic projections of the second sub-supporting parts into first parts and second parts; and in each supporting part, a length of the first part is not equal to a length of the second part.
Abstract:
The present disclosure provides an ultrasonic sensor, a display panel and a display apparatus. The ultrasonic sensor includes: a bearing substrate; an ultrasonic emission structure on the bearing substrate, wherein the ultrasonic emission structure includes a first piezoelectric film layer; and an ultrasonic receiving structure on the bearing substrate, wherein the ultrasonic receiving structure includes a second piezoelectric film layer. The piezoelectric constant of the first piezoelectric film layer is greater than the piezoelectric constant of the second piezoelectric film layer.
Abstract:
The present disclosure provides a microfluidic substrate, a microfluidic chip and a detection method. The microfluidic substrate according to the present disclosure includes a first substrate, and a plurality of droplet detecting elements on the first substrate and in an array. Each of the plurality of droplet detecting elements includes an ultrasonic conversion device and a voltage detecting element, the ultrasonic conversion device is configured to generate ultrasonic wave according to a first electric signal, receive a reflected ultrasonic wave, and convert the reflected ultrasonic wave into a second electric signal; and the voltage detecting element is configured to detect the second electric signal and determine whether a droplet exists at a position where the droplet detecting element is located based on the second electric signal.
Abstract:
Disclosed are a display device and a method for adjusting its display brightness. The display device includes a display screen and an ambient light sensor in the display screen, wherein the ambient light sensor includes a photodeformable element, and the photodeformable element includes a photodeformable material layer; and the photodeformable element is configured to deform in response to a change in ambient light to obtain output of the ambient light sensor. The ambient light sensor has a simple structure and is easy to be made and to be combined with the display screen.
Abstract:
The present disclosure provides an OLED touch component and an OLED display device with the same. the OLED touch component includes an array substrate formed with a wire bonding region; a film package disposed on the array substrate, and having a first slope which is provided at a side of the film package with respect to a wire bonding region; an insulating layer disposed on the film package and the array substrate, wherein a portion of the insulating layer covering the first slope is formed with a second slope; and a touch electrode disposed at the insulating layer and connected with a plurality of touch electrode leads, wherein a portion of the touch electrode lead located at the second slope is formed with a bending structure.
Abstract:
Disclosed herein includes a method, an apparatus, a display device and storage medium storing computer executable instructions for fingerprint recognition. The method may comprise turning on a first subset of a plurality of light sources located on an apparatus, capturing a first fingerprint acquisition frame using a plurality of image sensors on the apparatus, turning on a second subset of the plurality of light sources, and capturing a second fingerprint acquisition frame using the plurality of image sensors. The first fingerprint acquisition frame may include a first set of valid image zones and a first set of invalid image zones. The second fingerprint acquisition frame may include a second set of valid image zones and a second set of invalid image zones. The second set of valid image zones at least partially covers areas of a finger touching interface different from the first set of valid image zones.
Abstract:
The embodiments of the present disclosure provide a display panel, a display device, and a method for displaying Braille information. The display panel includes a plurality of scan lines, data lines, and display circuits arranged at intersections of the plurality of scan lines and the plurality of data lines. The display circuit includes a switch configured to be turned on or off according to a scan signal from the scan line, and a dot element coupled to the switch. The dot element includes a substrate, an electrode provided on the substrate, a thermosensitive layer provided on the electrode, and a dot key arranged on the thermosensitive layer. The electrode is coupled to the switch, and configured to be applied with a data signal from the data line when the switch is turned on. The thermosensitive layer is configured to be heated by the electrode to protrude the dot.
Abstract:
A photosensitive touch substrate, a fabrication method thereof, and a display apparatus. A method for fabricating a photosensitive touch substrate according to an embodiment of the present disclosure includes: forming a first electrode, a light emitting material layer, and a second electrode of a light emitting device on a substrate; forming a first electrode, a photosensitive functional layer, and a second electrode of a photosensitive device on the substrate. The first electrode of the light emitting device and one of the first electrode and the second electrode of the photosensitive device are formed by a one-time mask process.