Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi. A product FDCA composition is produced having a low amount of tetrahydrofuran dicarboxylic acid, a low b*, and a low amount of 5-formyl furan-2-carboxylic acid (FFCA).
Abstract:
A process for producing a microfiber product stream, the process comprises: (A) contacting cut multicomponent fibers having a length of less than 25 millimeters with a treated aqueous stream in a fiber slurry zone to produce a cut multicomponent fiber slurry; (B) contacting the cut multicomponent fiber slurry with a heated aqueous stream in a mix zone to produce a heated multicomponent fiber slurry; (C) routing the heated multicomponent fiber slurry to a fiber opening zone to remove a portion of the water dispersible sulfopolyester to produce an opened microfiber slurry; wherein the opening zone comprises a pipe reactor; and (D) routing the opened microfiber slurry to a primary solid liquid separation zone to produce the microfiber product stream and a first mother liquor stream.
Abstract:
A process to produce a purified dimethyl-furan-2,5-dicarboxylate (DMFD) by feeding furan dicarboxylic acid and methanol to an esterification zone to generate a crude diester composition, and purifying the crude diester composition with a physical separation process followed by crystallization, solid liquid separation, and optionally drying to produce a purified DMFD composition. A portion of the stream generated by solid liquid separation can be dissolved and subjected to crystallization and solid liquid separation repeatedly. The process is useful to produce a purified DMFD composition having a low b*, at least 98 wt. % DAFD solids, and a low concentration of 5-(methoxycarbonyl)furan-2-carboxylic acid (MCFC) and methyl 5-formylfuran-2-carboxylate (MFFC).
Abstract:
A process for purifying a crude furan 2,5-dicarboxylic acid composition (cFDCA) by hydrogenation of a FDCA composition dissolved in a hydrogenation solvent such as water, and hydrogenating under mild conditions, such as at a temperature within a range of 130° C. to 225° C. by contacting the solvated FDCA composition with hydrogen in the presence of a hydrogenation catalyst under a hydrogen partial pressure within a range of 10 psi to 900 psi. A product FDCA composition is produced having a low amount of tetrahydrofuran dicarboxylic acid, a low b*, and a low amount of 5-formyl furan-2-carboxylic acid (FFCA).
Abstract:
Disclosed is a process to produce a dry purified carboxylic acid product comprising furan-2,5-dicarboxylic acid (FDCA). The process comprises oxidizing at least one oxidizable compound selected from the following group: 5-(hydroxymethyl)furfural (5-HMF), 5-HMF esters (5-R(CO)OCH2-furfural where R=alkyl, cycloalkyl and aryl), 5-HMF ethers (5-R′OCH2-furfural, where R′=alkyl, cycloalkyl and aryl), 5-alkyl furfurals (5-R″-furfural, where R″=alkyl, cycloalkyl and aryl), mixed feed-stocks of 5-HMF and 5-HMF esters and mixed feed-stocks of 5-HMF and 5-HMF ethers and mixed feed-stocks of 5-HMF and 5-alkyl furfurals to generate a crude carboxylic acid slurry comprising FDCA, cooling a crude carboxylic acid slurry in cooling zone to form a cooled slurry stream. The cooled slurry stream is routed to a solid-liquid separation zone to generate a crude wet cake stream comprising FDCA that is dried in a drying zone to generate a dry carboxylic acid product stream comprising crude FDCA (cFDCA).
Abstract:
A process to produce a dry purified furan-2,5-dicarboxylic acid (FDCA) is described. After oxidation of 5-(hydroxymethyl)furfural (5-HMF), a crude FDCA stream is produced that is fed to a crystallization zone followed by a solid-liquid displacement zone to form a low impurity slurry stream. The solids in the low impurity slurry stream are dissolved in a dissolution zone to produce a hydrogenation feed that is hydrogenated in a hydrogenation reactor to generate a hydrogenated FDCA composition. The hydrogenated FDCA composition is routed to a crystallization zone to form a crystallized produce stream that is separated from liquid in a solid-liquid separation zone to generate a purified wet cake stream containing FDCA that can be dried in a drying zone to generate a dry purified FDCA product stream.
Abstract:
A process for producing a microfiber product stream, the process comprising: (A) contacting cut multicomponent fibers having a length of less than 25 millimeters with a treated aqueous stream in a fiber slurry zone to produce a cut multicomponent fiber slurry; (B) contacting the cut multicomponent fiber slurry with a heated aqueous stream in a mix zone to produce a heated multicomponent fiber slurry; (C) routing the heated multicomponent fiber slurry to a fiber opening zone to remove a portion of the water dispersible sulfopolyester to produce an opened microfiber slurry; and (D) routing the opened microfiber slurry to a primary solid liquid separation zone to produce the microfiber product stream and a first mother liquor stream.
Abstract:
Disclosed herein is a method to make 5-(alkoxycarbonyl)furan-2-carboxylic acids (ACFC) from feedstocks comprised of furoates. When a feedstock comprised of methyl 5-methylfuran-2-carboxylate (MMFC) is used a product comprised of (5-methoxycarbonyl)furan-2-carboxylic acid (MCFC) is obtained in high yield.
Abstract:
Disclosed herein is a method to make 5-(alkoxycarbonyl)furan-2-carboxylic acids (ACFC) from feedstocks comprised of furcates. When a feedstock comprised of methyl 5-methylfuran-2-carboxylate (MMFC) is used a product comprised of (5-(methoxycarbonyl)furan-2-carboxylic acid (MCFC) is obtained in a high yield.
Abstract:
Processes and systems for making recycle content hydrocarbons, including olefins, using a cracker furnace having enhanced coil design. In some cases, the design of the furnace may prevent coking, so that the run length of the furnace is longer than conventional cracking furnaces. Cracker feed streams to the furnace can include recycle content pyrolysis oil and may be used to form olefin-containing effluent stream having recycle content.