Abstract:
Present disclosure provides a signal processing method and device. Spectral coefficients of a current frame of a frequency-domain audio signal are divided into N sub-bands. N is a positive integer greater than 1. According to an energy attribute and a spectral attribute of a first subset of the N sub-bands, whether to modify original envelope values of sub-bands in the first subset is determined. A frequency range of each of the M sub-bands in the first subset is lower than a frequency range of each of the K sub-bands. Based on a determination that the original envelope values of the M sub-bands need to be modified, the original envelope values of the M sub-bands are modified individually to obtain modified envelope values of the M sub-bands. Encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands and original envelope values of the K sub-bands.
Abstract:
Embodiments of the present application provide a coding/decoding method, apparatus, and system. According to the coding method, de-emphasis processing is performed on a full band signal by using a de-emphasis parameter determined according to a characteristic factor of an input audio signal, and then the full band signal is coded and sent to a decoder, so that the decoder performs corresponding de-emphasis decoding processing on the full band signal according to the characteristic factor of the input audio signal and restores the input audio signal. This resolves a prior-art problem that an audio signal restored by a decoder is apt to have signal distortion, and implements adaptive de-emphasis processing on the full band signal according to the characteristic factor of the audio signal to enhance coding performance, so that the input audio signal restored by the decoder has relatively high fidelity and is closer to an original signal.
Abstract:
Present disclosure provides a signal processing method and device. Spectral coefficients of a current frame of a frequency-domain audio signal are divided into N sub-bands. N is a positive integer greater than 1. According to an energy attribute and a spectral attribute of a first subset of the N sub-bands, whether to modify original envelope values of sub-bands in the first subset is determined. A frequency range of each of the M sub-bands in the first subset is lower than a frequency range of each of the K sub-bands. Based on a determination that the original envelope values of the M sub-bands need to be modified, the original envelope values of the M sub-bands are modified individually to obtain modified envelope values of the M sub-bands. Encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands and original envelope values of the K sub-bands.
Abstract:
Embodiments of the present disclosure provide a decoding method and a decoding apparatus. The decoding method includes: in a case in which it is determined that a current frame is a lost frame, synthesizing a high frequency band signal; determining subframe gains of multiple subframes of the current frame; determining a global gain of the current frame; and adjusting, according to the global gain and the subframe gains of the multiple subframes, the synthesized high frequency band signal to obtain a high frequency band signal of the current frame. A subframe gain of the current frame is obtained according to a gradient between subframe gains of subframes previous to the current frame, so that transition before and after frame loss is more continuous, thereby reducing noise during signal reconstruction, and improving speech quality.
Abstract:
An encoding method, a decoding method, an encoding apparatus, a decoding apparatus, a transmitter, a receiver, and a communications system. The encoding method includes: dividing a to-be-encoded time-domain signal into a low band signal and a high band signal; performing encoding on the low band signal to obtain a low frequency encoding parameter; performing encoding on the high band signal to obtain a high frequency encoding parameter, and obtaining a synthesized high band signal; performing short-time post-filtering processing on the synthesized high band signal to obtain a short-time filtering signal; and calculating a high frequency gain based on the high band signal and the short-time filtering signal. A technical solution according to the embodiments of the present application can improve an encoding and/or decoding effect.
Abstract:
Embodiments of the present invention provide a coding/decoding method, apparatus, and system. According to the coding method, de-emphasis processing is performed on a full band signal by using a de-emphasis parameter determined according to a characteristic factor of an input audio signal, and then the full band signal is coded and sent to a decoder, so that the decoder performs corresponding de-emphasis decoding processing on the full band signal according to the characteristic factor of the input audio signal and restores the input audio signal. This resolves a prior-art problem that an audio signal restored by a decoder is apt to have signal distortion, and implements adaptive de-emphasis processing on the full band signal according to the characteristic factor of the audio signal to enhance coding performance, so that the input audio signal restored by the decoder has relatively high fidelity and is closer to an original signal.
Abstract:
Embodiments of the present invention provide a multimode wireless terminal, including a general-purpose central processing unit, a reconfigurable baseband processing module, a reconfigurable intermediate radio frequency module, and a reconfigurable antenna module, terminal is applicable to various network environments.
Abstract:
An encoding method, a decoding method, an encoding apparatus, a decoding apparatus, a transmitter, a receiver, and a communications system. The encoding method includes: dividing a to-be-encoded time-domain signal into a low band signal and a high band signal; performing encoding on the low band signal to obtain a low frequency encoding parameter; performing encoding on the high band signal to obtain a high frequency encoding parameter, and obtaining a synthesized high band signal; performing short-time post-filtering processing on the synthesized high band signal to obtain a short-time filtering signal; and calculating a high frequency gain based on the high band signal and the short-time filtering signal. A technical solution according to the embodiments of the present invention can improve an encoding and/or decoding effect.
Abstract:
A condenser in a gravity loop heat pipe heat sink and a method for producing the condenser are disclosed. The production method includes the following steps: squeezing a base material of a condenser to form a condenser substrate and several longitudinal channels of the condenser, where the longitudinal channels of the condenser are parallel to and thread through the condenser substrate; drilling holes at the two ends of the condenser substrate to form transverse channels of the condenser, where the transverse channels of the condenser are connected to the longitudinal channels of the condenser; and sealing ends of the longitudinal channels of the condenser and ends of the transverse channels of the condenser according to determined holes on the condenser that are connected to the outside.
Abstract:
Example communication methods and apparatus are described. One example method includes generating a first signal and sending a first signal, where the first signal includes an orthogonal frequency division multiplexing (OFDM) symbol, a first-type cyclic prefix (CP), and a second-type CP. CP resources of the first-type CP include two types of CP resources: a first CP resource and a second CP resource. CP resources of the second-type CP include one type of CP resource, that is, the second CP resource. The first CP resource may be used to carry data that is different from data carried on the OFDM symbol. The second CP resource may be used to carry data that is the same as the data carried on the OFDM symbol.