摘要:
A method and system of conducting named entity recognition. One method comprises selecting one or more examples for human labelling, each example comprising a word sequence containing a named entity and its context; and retraining a model for the named entity recognition based on the labelled examples as training data.
摘要:
A centrifugal fan includes a fan frame (20) and an impeller (40) received in the fan frame. The impeller includes a hub (41) having a circular top wall (410) and a cylindrical side wall (412) extending downwardly from a rim of the circular top wall, a plurality of blades (42) extending radially from the side wall of the hub and a blade ring (44). The blade ring includes an annular top plate (441), a cylindrical sidewall (442) extending downwardly from an outer periphery of the top plate, and a flange (443) extending outwardly from a bottom of the cylindrical sidewall. The blade ring is arranged on top surfaces of the blades received in an air inlet (24a) defined in a top surface of the fan frame, and the top plate of the blade ring and the top surface of the fan frame are coplanar with each other.
摘要:
The present invention is directed towards systems and methods for simulating and analyzing a change in concentration of solute in a solution. The solution being simulated is encompassed by an interface. The concentration at a first point in time is determined at a set of nodes encompassed by the interface. A spatial cell is associated with each node. An extended concentration is calculated at an extended node. The extended node is not encompassed by the interface. The concentration is calculated at a second point in time at a set of nodes encompassed by the interface, based upon the concentration at the set of nodes encompassed by the interface at the first point in time and the extended concentration.
摘要:
A computer implemented method for simulating a final pattern of a droplet of a fluid having a plurality of fluid properties is disclosed. The method includes representing a position of a moving fluid boundary at a first point in time with a plurality of fluid markers, wherein the moving fluid boundary provides a boundary for a single-phase fluid. The moving fluid boundary separates a simulation space into a fluid space and a vacuum space, and the single-phase fluid inhabits the fluid space. The method further includes evaluating a plurality of indicator function defined on a quadrilateral grid for a velocity field, a pressure, and the plurality of fluid markers. The quadrilateral grid is formed by a plurality of points inside the fluid space and the vacuum space. The method also includes calculating surface tension at the moving fluid boundary through a level set method, solving a plurality of flow equations through a projection method for a surface location on the boundary, and representing the position of the moving fluid boundary at a second point in time by updating the positions of the fluid markers based on the plurality of velocity values. The fluid properties and the shape of the final pattern is then stored on a computer readable media.
摘要:
An electrical connector system includes a substrate (1) connected to PHY side and an electrical connector (3) mounted on the substrate (1), a transformer (5) and a common mode filter (7). The electrical connector (3) is used to mate with a cable assembly and so forms a Cable side. The transformer (5) further includes a first wire (51) having two opposite ends electrically connected to the PHY side and a second wire (53) having two opposite ends. The common mode filter (7) has a third wire (73) and a fourth wire (75) physically separated from the second wire (53). The third wire (73) has an end electrically connected to one end of the second wire (53) and an opposite end electrically connected to the Cable side. The fourth wire (75) has an end electrically connected to the opposite end of the second wire (53) and an opposite end electrically connected to the Cable side.
摘要:
An electrical connector system includes a substrate (1) connected to PHY side and an electrical connector (3) mounted on the substrate (1), a transformer (5) and a common mode filter (7). The electrical connector (3) is used to mate with a cable assembly and so forms a Cable side. The transformer (5) further includes a first wire (51) having two opposite ends electrically connected to the PHY side and a second wire (53) having two opposite ends. The common mode filter (7) has a third wire (73) and a fourth wire (75) that are physically separated from the second wire (53). The third wire (73) has an end electrically connected to one end of the second wire (53) and an opposite end electrically connected to the Cable side. The fourth wire (75) has an end electrically connected to the opposite end of the second wire (53) and an opposite end electrically connected to the Cable side.
摘要:
A stack for a bistable microelectronic switch. A porphyrin compound and a conductive polymer are sandwiched between two electrodes. The device exhibits a switching behavior at a certain voltage and can be used in arrays to form a memory device. When a first voltage is applied between the electrodes, the resistance across the two electrodes is very high, and when a increased voltage is applied, the resistance is generally two orders of magnitude lower. Copper phthalocyanine or 5, 10, 15, 20-tetrakis(4-methoxyphenyl)-21H, 23H-porphine cobalt(II) can be used as the bistable compound, and poly-(3,4-ethylenedioxythiophene) and poly-(styrenesulphonic acid) can be used as the conductive polymer.
摘要:
A modular jack (100) has a housing (10), a magnetic module (200) having a printed circuit board (21), a first and a second set of terminals (26, 221) mounted to the printed circuit board. The magnetic module includes a set of toroidal coil units (2) having a first core (23), a second core (24) and a third core (25), a number of first wires (233) wound around the first core and the third core, and a second wire (243) wound around the second core and the third core.
摘要:
A computer implemented method for simulating a final pattern of a droplet of a fluid having a plurality of fluid properties is disclosed. The method includes representing a position of a moving fluid boundary at a first point in time with a plurality of fluid markers, wherein the moving fluid boundary provides a boundary for a single-phase fluid. The moving fluid boundary separates a simulation space into a fluid space and a vacuum space, and the single-phase fluid inhabits the fluid space. The method further includes evaluating a plurality of indicator function defined on a quadrilateral grid for a velocity field, a pressure, and the plurality of fluid markers. The quadrilateral grid is formed by a plurality of points inside the fluid space and the vacuum space. The method also includes calculating surface tension at the moving fluid boundary through a level set method, solving a plurality of flow equations through a projection method for a surface location on the boundary, and representing the position of the moving fluid boundary at a second point in time by updating the positions of the fluid markers based on the plurality of velocity values. The fluid properties and the shape of the final pattern is then stored on a computer readable media.
摘要:
A printing platform receives (102) (preferably in-line with a semiconductor device printing process (101)) a substrate having at least one semiconductor device printed thereon and further having a test structure printed thereon, which test structure comprises at least one printed semiconductor layer. These teachings then provide for the automatic testing (103) of the test structure with respect to at least one static (i.e., relatively unchanging) electrical characteristic metric. The static electrical characteristic metric (or metrics) of choice will likely vary with the application setting but can include, for example, a measure of electrical resistance, a measure of electrical reactance, and/or a measure of electrical continuity. Optionally (though preferably) the semiconductor device printing process itself is then adjusted (105) as a function, at least in part, of this metric.