摘要:
A new approach to processing and displaying received Doppler signals is disclosed. This approach starts with a set of N power spectra corresponding to each of N times. Those power spectra are then used to create of set of pixels for display with respect to an X axis and a Y axis so that the X coordinate of each pixel in the set corresponds to a time and the Y coordinate of each pixel in the set corresponds to a quantized power level. An attribute (e.g., color or intensity) of each pixel in the set is set to represent the highest velocity for the time-and-quantized-power-level combination that corresponds to the X and Y coordinates of each pixel in the set.
摘要:
O2 and CO2 can be exchanged with blood by passing the blood through a void within a bundle of nanotubes, where the ends of the nanotubes are open to a gas flow channel. The void in the bundle is configured to form a flow channel that is large enough to permit the red blood cells to flow therethrough. The nanotubes in the bundle are spaced close enough to retain the red blood cells within the flow channel, yet far apart enough to permit blood plasma to flow through spaces between adjoining nanotubes in the bundle, and the nanotubes in the bundle have defects in their walls that permit O2 molecules and CO2 molecules to diffuse therethrough. The defects are present in a sufficient number and total area to effectively deliver O2 to the blood and carry away CO2 from the blood. Alternative embodiments may be used for fluids other than blood.
摘要:
Chemotherapeutic treatment for certain cancers may be combined with low intensity, intermediate frequency alternating electric fields that are tuned to a particular type of target cell. When the tuned fields were combined with Paclitaxel, Doxorubicin or Cyclophosphamide, excellent results were obtained against human breast cancer cells (MDA-MB-231) and non-small cell lung (H1299) carcinomas in culture. More specifically, cell proliferation inhibition similar to that obtained by drug alone was reached by exposure to the combined treatment at drug concentrations between one and two orders of magnitude lower than for drug-only regimens of treatment.
摘要:
An article of clothing is provided for selectively destroying dividing cells in living tissue formed of dividing cells and non-dividing cells. The dividing cells contain polarizable intracellular members and during late anaphase or telophase, the dividing cells are connected to one another by a cleavage furrow. The article of clothing includes insulated electrodes to be coupled to a generator for subjecting the living tissue to electric field conditions sufficient to cause movement of the polarizable intracellular members toward the cleavage furrow in response to a non-homogeneous electric field being induced in the dividing cells. The non-homogeneous electric field produces an increased density electric field in the region of the cleavage furrow. The movement of the polarizable intracellular members towards the cleavage furrow causes the breakdown thereof which adversely impacts the multiplication of the dividing cells.
摘要:
AC electric fields at particular frequencies and field strengths have been shown to be effective for destroying rapidly proliferating cells such as cancer cells. The effectiveness of such fields is improved when the field is sequentially switched between two or more different directions. The effectiveness of such fields can be improved even further by choosing the rate at which the field is switched between the various directions.
摘要:
As compared to conventional electrodes, the electrode configurations disclosed herein minimize irritation and damage to the skin when they are placed in contact with a patient's body over extended of time. The electrodes are formed from a conductive substrate coated with a thin dielectric material, and a plurality of open spaces pass through the electrodes. Those open spaces are distributed and sized to permit moisture on the surface of the patient's body to escape when the electrode is placed in contact with the patient's body. One intended use for the electrodes is for treating tumors by applying an AC electric field with specific frequency and field strength characteristics over an extended period of time.
摘要:
A system for in vivo analysis which includes agglutinative particles capable of interacting with at least one analyte so as to cause an optical change; and at least one in vivo imaging system (220, 230, 240) configured for detecting the optical change in vivo. The system may be incorporated within an ingestible capsule (100).
摘要:
Dividing cells within living tissue that contain polarizable intracellular members can be destroyed using at least two insulated electrodes and an electric field source that applies an alternating electric potential across the conductors within the insulated electrodes. The electric field is transformed into a non-homogenous electric field that produces an increased density electric field in a region of the dividing cells. The non-homogenous electric field is of sufficient intensity to cause the intracellular members to be drawn to that region, which causes a pressure increase that results in a structural breakdown of the dividing cells.
摘要:
Cells that are in the process division are vulnerable to damage by AC electric fields that have specific frequency and field strength characteristics. The selective disruption of rapidly dividing cells can therefore be accomplished by imposing an AC electric field in a target region for extended periods of time. Some of the cells that divide while the field is applied will be damaged, but the cells that do not divide will not be harmed. This selectively damages or disrupts rapidly dividing cells like parasites, but does not harm normal cells that are not dividing.
摘要:
Cells that are in the process division are vulnerable to damage by AC electric fields that have specific frequency and field strength characteristics. The selective destruction of rapidly dividing cells can therefore be accomplished by imposing an AC electric field in a target region for extended periods of time. Some of the cells that divide while the field is applied will be damaged, but the cells that do not divide will not be harmed. This selectively damages rapidly dividing cells like bacteria, but does not harm normal cells that are not dividing. Since the vulnerability of the dividing cells is strongly related to the alignment between the long axis of the dividing cells and the lines of force of the electric field, improved results can be obtained when the field is sequentially imposed in different directions.