Abstract:
Methods, systems, and devices for wireless communication are described. A base station may configure a first sub-band and a second sub-band of a system bandwidth for communication with a user equipment (UE). The base station may determine a spatial quasi co-location (QCL) relationship between the first sub-band and the second sub-band and may transmit signaling to the UE that indicates the determined spatial QCL relationship. Upon receiving the signaling, the UE may derive, based on the indicated spatial QCL relationship, spatial parameters (e.g., beam width, pointing angle, etc.) for communication with the base station via the second sub-band. The spatial parameters may be derived based on spatial parameters used for reception of a downlink transmission from the base station via the first sub-band. Subsequently, the UE may communicate with the base station via the second sub-band using the derived spatial parameters.
Abstract:
Wireless communications systems and methods related to communications in a network that supports data transmitted in an unlicensed frequency band and a licensed frequency band are provided. A first wireless communication device communicates, with a second wireless communication device in a first frequency band, a first system information signal indicating a transmission configuration for a second system information signal in a second frequency band different from the first frequency band. The first wireless communication device communicates, with the second wireless communication device in the second frequency band, the second system information signal based on the transmission configuration.
Abstract:
Apparatuses and methods of beam switching are presented. A beam switch message (BSM) is transmitted to a second device via a first beam set. The BSM includes a command to switch from communication via the first beam set to communication via a second beam set at a switch time. It is determined whether a response message is received from the second device via the first beam set, the response message indicating that the second device received the BSM. A communication is sent to the second device via the second beam set after the switch time when the response message is unreceived.
Abstract:
Wireless communications systems and methods related to performing random access procedures. A base station (BS) receives, from a user equipment (UE), a plurality of random access preambles from a plurality of beam directions, wherein each of the plurality of random access preambles is received from a different beam direction, and wherein the plurality of random access preambles are associated with multiple random access opportunities of a random access attempt. The BS sends, in response to the plurality of random access preambles, a plurality of random access response (RAR) messages in the plurality of beam directions.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless communications systems may support uplink random access channel (RACH) transmissions on multiple beams and over multiple component carriers (CCs). A wireless device may transmit a random access preamble to a base station in a first RACH transmission, which may indicate a set of CCs over which the base station may respond with a random access response (RAR) in a second RACH transmission. The second RACH transmission may then include an indication for which CCs the wireless device may use for a subsequent RACH transmission (e.g., a RACH message 3). The wireless device may also indicate a beam index and/or time-frequency resources associated with beams and/or CCs used for such cell acquisition transmissions. In other examples, the base station may indicate resources (e.g., via a handover command or RACH command) for wireless device scheduling request and/or beam-failure recovery request transmission.
Abstract:
User equipment (UE) selection of contention-free random access (CFRA) and contention-based random access (CBRA) for handover processing is discussed. The aspects include receiving a random access configuration at the UE including configuration for CFRA and CBRA. The UE will determine a first random access resource, wherein the first random access resource maps to one or more beams from a target base station. The UE may initiate a random access request using the CFRA when the first random access resource is a contention-free resource, and initiate the random access request using the CBRA when the first random access resource is a contention-based resource.
Abstract:
Apparatuses and methods of beam switching are presented. A beam switch message (BSM) is transmitted to a second device via a first beam set. The BSM includes a command to switch from communication via the first beam set to communication via a second beam set at a switch time. It is determined whether a response message is received from the second device via the first beam set, the response message indicating that the second device received the BSM. A communication is sent to the second device via the second beam set after the switch time when the response message is unreceived.
Abstract:
A method of managing uplink interference at a base station includes: detecting uplink interference caused by one or more inter-cell user equipments to an uplink channel of a base station, the one or more inter-cell user equipments associated with a neighboring base station; receiving, at the base station, assistance information from the neighboring base station, the assistance information comprising a parameter list of ongoing transmissions by the one or more user equipments associated with the neighboring base station; and performing uplink interference cancellation, at the base station, on at least a portion of a received signal based on the assistance information to generate a resulting signal.
Abstract:
A user equipment (UE) may determine a capability of the UE to support multiple subscriber identity modules (SIMs). The multiple SIMs may enable the UE to communicate with multiple network nodes. The UE may notify at least one network node of the multiple network nodes of the multiple SIM capability of the UE.
Abstract:
Aspects of the present disclosure provide a user equipment (UE) assisted synchronization method in which a small cell can request and obtain time and frequency offset information from one or more UEs currently associated with the small cell, and the small cell can discipline its clock drift accordingly.