Abstract:
The present invention relates to a fiber optic telecommunication cabinet for use in fiber optic telecommunication networks. The fiber optic telecommunication cabinet comprises a base and a housing. The base has a plurality of ports passing through the base to allow passage telecommunication cables into the fiber optic cabinet. The fiber optic telecommunication cabinet further includes an optical fiber termination block attached to the base. The optical fiber termination block has a plurality of optical modules supported by the mounting frame, wherein the optical modules may be rotated in a plane perpendicular to the longitudinal direction of the fiber optic telecommunication cabinet from a first storage position to a second accessible position.
Abstract:
A power control method for a Physical Uplink Control Channel, which includes: when the response information of multiple Physical Downlink Shared Channels (PDSCH) sent by a base station over multiple component carriers is sent on one Physical Uplink Control Channel (PUCCH), the base station indicating a unified transmitted power control command for the Physical Uplink Control Channel; or the base station indicating multiple transmitted power control commands for the Physical Uplink Control Channel. The present invention also provides a base station and a user equipment.
Abstract:
The present invention discloses a method for a signaling configuration of a sounding reference signal. The method includes: a base station notifying a user equipment to aperiodically send the sounding reference signal, and sending configuration information of aperiodically sending the sounding reference signal (SRS) down to the user equipment. The present invention also discloses a base station for a signaling configuration of a sounding reference signal and a user equipment for a signaling configuration of a sounding reference signal. The present invention can realize that the user equipment aperiodically sends the SRS, which improves the utilization ratio of SRS resources and increases the flexibility of resource scheduling.
Abstract:
The present disclosure provides a method for allocating physical hybrid ARQ indicator channels, which is used for sending indication information corresponding to multiple uplink sub-frames in the same downlink sub-frame in a TDD system. The method includes: in the TDD system, through an index of a physical resource block where uplink data resides as well as an index of an uplink sub-frame where the uplink data resides, determining an index of a physical hybrid ARQ indicator channel group where a physical hybrid ARQ indicator channel in an downlink sub-frame resides and an intra-group index of the physical hybrid ARQ indicator channel in the physical hybrid ARQ indicator channel group according to an indexing rule, and further determining an index of the physical hybrid ARQ indicator channel by using the index of the physical hybrid ARQ indicator channel group and the intra-group index. According to implicit mapping, the method of the present disclosure implements the allocation of the physical hybrid ARQ indicator channels over which the downlink indication messages corresponding to each uplink sub-frame are transmitted, thereby being capable of overcoming the problem potentially present in existing technologies that multiple indication messages reside on the same physical hybrid ARQ indicator channel.
Abstract:
The disclosure provides a physical uplink control channel (PUCCH) power control method. A user equipment (UE) determines a power control parameter nHARQ for a PUCCH format 3 transmission and performs power control on the PUCCH format 3 based on the nHARQ. The disclosure also provides a PUCCH power control apparatus. According to the disclosure, for a TDD system, the power control parameter nHARQ for the PUCCH format 3 transmission may be determined, which efficiently solves the problem regarding power control when feedback is performed in PUCCH format 3.
Abstract:
A method for transmitting feedback information and a user equipment are disclosed in the present document, wherein, one method includes: a User Equipment (UE) performing time domain extension on feedback information within one subframe; and mapping respectively data which go through the time domain extension and demodulation reference signals corresponding to the data which go through the time domain extension to multiple uplink Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols within the subframe, and transmitting the data which go through the time domain extension and the demodulation reference signals corresponding to the data which go through the time domain extension in the same frequency domain position in a way of time division multiplexing; wherein, each uplink SC-FDMA symbol occupies n successive physical resource blocks in the frequency domain, and n is a positive integer.
Abstract:
There is provided a dock without a power source for a portable digital device with at least one integrated speaker driver. The dock may include a platform for placement of the portable digital device; a protrusion located at the platform for connection of the portable digital device with the dock with the protrusion including a slot for egress of air from at least one hole in a casing of the portable digital device to the dock; and at least one primary chamber to receive air from the portable digital device with the at least one primary chamber having a vented port for the egress of air. Advantageously, sound from the at least one integrated speaker driver is amplified when the portable digital device is connected to the dock. The connection of the portable digital device with the dock may be securable. A horn may be included in an exterior facing opening of the vented port, as the horn advantageously improves aspects of sound such as, for example, sound directivity, radiation efficiency or both of the aforementioned.
Abstract:
The disclosure discloses a method and terminal for transmitting uplink control information. The method includes: coding the uplink control information required to be transmitted and data information corresponding to one or two transport blocks respectively, obtaining an encoded sequence according to a target length, and forming a corresponding coded modulation sequence from the encoded sequence according to a modulation mode (401); interleaving the obtained coded modulation sequence, and transmitting the interleaved coded modulation sequence on a layer corresponding to a Physical Uplink Shared Channel (PUSCH) (402). By adopting the method and terminal according to the disclosure the transmission of uplink control information with greater bits on the PUSCH is realized. The disclosure also provides a method for determining a number of code symbols required in each layer when transmitting uplink control information on the PUSCH, thus the purpose of determining a number of code symbols required in each layer when transmitting uplink control information on the PUSCH is realized.
Abstract:
A transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. Another transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a cyclic prefix and a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. The methods can avoid the interference of the preamble to the data of the uplink subframe, and can improve the coverage area of the random access channel and the work efficiency of the time division duplex system.
Abstract:
The present invention provides a method and system for processing an uplink control signaling feedback. The method comprises: a base station configuring a feedback mode of an uplink control signaling for user equipment, wherein the feedback mode is used for instructing the user equipment a manner in which to transmit the uplink control signaling on a physical uplink control channel (PUCCH) and/or a physical uplink shared channel (PUSCH); and the user equipment sending the uplink control signaling according to the feedback mode. By way of the present invention, it is ensured that the base station can correctly demodulate the uplink control signaling.