Abstract:
A method of making the cathode of a diode image intensifier tube by evaporating some alkali metals and antimony on to the inner surface of a cathode window which by means of a layer of frit is joined to a metallic cathode flange, and in which there is provided between the cathode and the cathode flange, or, as the case may be, the cathode housing, an electrical resistance of a pre-determined value such that at light levels at which there is a danger of the anode being burnt, the diode image intensifier tube is defocussed or cut off, and wherein prior to the evaporation of the metals an alkali-resistant and insulating layer is applied to the frit layer, and that the evaporation of the antimony is carried out so that there is formed between the cathode and the cathode flange an area extending around the cathode and where no antimony is present, and that at least one galvanic connection is passed vacuum-tight outside the diode image intensifier tube, and one end of said connection is arranged at the place of the cathode to be formed for supplying voltages of a pre-determined magnitude to the cathode during its manufacture and later during operation of the tube.
Abstract:
A method of making the cathode of a diode image intensifier tube by evaporating some alkali metals and antimony on to the inner surface of a cathode window which by means of a layer of frit is joined to a metallic cathode flange, and in which there is provided between the cathode and the cathode flange, or, as the case may be, the cathode housing, an electrical resistance of a pre-determined value such that at light levels at which there is a danger of the anode being burnt, the diode image intensifier tube is defocussed or cut off, and wherein prior to the evaporation of the metals an alkali-resistant and insulating layer is applied to the frit layer, and that the evaporation of the antimony is carried out so that there is formed between the cathode and the cathode flange an area extending around the cathode and where no antimony is present, and that at least one galvanic connection is passed vacuum-tight outside the diode image intensifier tube, and one end of said connection is arranged at the place of the cathode to be formed for supplying voltages of a pre-determined magnitude to the cathode during its manufacture and later during operation of the tube.
Abstract:
An image intensifier or other tube including a photocathode or the like and a channel-type electron multiplier therefor. The multiplier includes a perforated glass plate with a conductive electrode layer evaporated on each of two opposite sides thereof. Each of the electrodes has a plurality of holes therethrough that lie in registration with the plate holes. A layer of titanium is evaporated onto the output electrode. A substantial increase in photocathode life is then achieved. Alternatively, the said three layers need not be employed. Instead, the output electrode itself may be made of titanium. In this case, no other layer need be evaporated over the output electrode.
Abstract:
An end-on photomultiplier tube has a fused quartz dome covering its light-receiving face plate or window and further has its photocathode interfaced with the window and with the tube vacuum. The dome is a partial hemisphere so shaped that, in combination with the window thickness, the two members form a true hemisphere centered on the cathode. An incident light beam passing through the dome and directed onto the cathode center is reflected back into the dome from both the inner and outer interfaces of the cathode. The exterior surface of the dome lying in the path of these reflected beams is aluminized and, since the radius of curvature of the dome is centered on the cathode, these reflected beams are normal to the aluminized surface and thus re-reflected and reimaged back onto the cathode center. The arrangement achieves quantum efficiency gains by permitting a multiple photon traversal of the cathode and by controlling the angle of incidence to promote maximum interface reflectance. Also the reduction in size of the effective photocathode area minimizes photomultiplier dark current.