Abstract:
This valve is integrated into a fluid distribution network and enables selective interruption or authorization of the circulation of a fluid. The valve includes a fluid blocking member driven in rotation by an actuator device of the valve and at least one journal, a hollow body inside which the blocking member is mobile and which defines at least one bore for receiving the journal, and a bearing disposed around each journal and inside the bore of the body enabling support of the journal and guidance thereof in rotation relative to the bore, thereby centering the journal. The valve further includes a device for immobilizing and sealing for maintenance the journal relative to the body of the valve. This immobilization device is disposed on the same side of the bearing as the internal volume of the hollow body and is maneuverable via the bearing to go from a non-clamped first configuration to a clamped second configuration in which it immobilizes the journal in the bore and vice versa.
Abstract:
An apparatus is provided for modifying the geometry of at least one part of a turbine, which can include a shell assembly that includes an outer shell that is shaped to modify the shape of a pre-existing element of a turbine. The outer shell of the shell assembly can be composed of a fiber-reinforced polymeric material and can at least partially define an inner cavity. The outer shell can be bonded to a structure to modify the geometrical shape of that structure. Thereafter, a polymer casting can be injected into the inner cavity via at least one injection port attached to the shell assembly. In some embodiments, one or more stiffeners and/or a core can be positioned within the inner cavity to help improve the bonding of the polymer casting to the shell and/or improve a structural property of the apparatus.
Abstract:
Wind turbine blades comprising one or more deformable trailing edge sections, each deformable trailing edge section comprising a first and a second actuator, wherein the second actuator is arranged substantially downstream from the first actuator, and wherein the first actuator is of a first type and wherein the second actuator is of a second type, the second type being different from the first type. The application further relates to wind turbines comprising such blades and methods of operating a wind turbine comprising one or more of such blades.
Abstract:
The method allows stabilizing the rotation speed of a hydraulic machine with S-characteristics. It is implemented by means of a control loop feedback system having a controller for calculating an orientation to affect guide vanes of the machine. It includes steps of calculating a set of internal states associated with the operating point of the machine, establishing a linearized transfer function in function of the set of internal states, calculating characteristics parameters of the controller in function of the established transfer function so that the control loop feedback system is stable, measuring the rotation speed of the hydraulic machine, comparing the measured rotation speed with a target rotation speed, and adjusting the orientation affected to the guide vanes so as to reduce the speed difference between the calculated rotation speed and the target rotation speed.
Abstract:
Aerating system for the runner of a hydraulic turbine, the runner comprising a plurality of blades, such that inter-blade canals are configured between each pair of blades for the admission of air in the water flow circulating through the hydraulic turbine, such that the aerating system comprises at least one hydrofoil located in the inter-blade canal of the runner contacting the pair of blades configuring the inter-blade canal where the hydrofoil is located, such that the hydrofoil has a non-axis symmetrical profile, and such that at least one of the blades in contact with the hydrofoil comprises an aerating canal delivering air to the hydrofoil.
Abstract:
An electrical machine comprising a first item having a male portion and a second item having a female portion. The male and female portions have a shape adapted to each other such that the male portion can be fitted into the female portion. The male and/or female portion is formed as a stack of sheets comprising standard sheets and protruding sheets. The “male” standard sheets substantially fit into the female portion and the “male” protruding sheets are larger than the female portion such that, in use, said protruding sheets are deformed during insertion of the male portion into the female portion. The “female” standard sheets have an opening into which the male portion substantially fits, and the “female” protruding sheets have an opening smaller than the male portion such that, in use, said protruding sheets are deformed during insertion of the male portion into the opening of the female portion.
Abstract:
Multiphase generator-conversion systems and clusters are disclosed. The multiphase generator-conversion systems include a multiphase n-stator generator, n conversion lines and a transformer module. Each n conversion line is coupled to the plurality of phase lines of one of the n stators, respectively. Each conversion line comprises a rectification module, coupled to the respective plurality of phase lines, configured to receive a multiphase AC voltage and generate a first DC voltage at an output. A dc/ac inverter is coupled to the output of the respective rectification module. The dc/ac inverter receives the first dc voltage and generates a single-phase AC voltage at an output. The transformer module is arranged to receive the n single-phases of the dc/ac inverters and generate an n-phase AC voltage at an output. This voltage is input to a single diode rectifier. Multiphase generator-conversion clusters include multiphase generator-conversion systems arranged to be coupled to a diode rectifier.
Abstract:
Method of operating a wind turbine rotational system having a plurality of drives and a central control system (CCS), each drive having a motor and an electronic converter. The CCS sends speed and torque setpoints to the electronic converters, and the electronic converters drive the motors in accordance with said setpoints. The method comprises designating one of the drives as master drive and the other drives as slave drives. The method also comprises the CCS determining a master speed setpoint and a master torque setpoint, and sending said setpoints to the master drive. The method further comprises the CCS obtaining the real torque and speed of the motor of the master drive and sending a slave speed setpoint and a slave torque setpoint to each slave drive, said slave speed setpoint based on the master speed setpoint and said slave torque setpoint equal to the obtained real torque of the master drive.
Abstract:
A wind turbine blade having a blade surface comprising a pressure side and a suction side, comprising one or more flow disturbing devices for provoking air flow separation arranged on the suction side of the blade, wherein the flow disturbing device is removable.
Abstract:
Methods for installing blades of a wind turbine are provided. The method comprises: providing a blade holder, wherein the blade holder comprises a connection element adapted to be attached to a mounting surfaces and a lifting equipment attachment, the blade holder being provided with a steering mechanism. Then, the blade holder is attached to the blade. The blade holder is hoisted with the blade towards the rotor hub with lifting equipment. The blade holder is attached to the mounting surface of the hub using the connection element. The rotor hub is rotated using the weight of the blade holder and the blade to a first desired position for mounting the blade to the rotor hub. The blade holder is detached from the hub. Then, the blade may be mounted to the rotor hub. A wind turbine blade holder for holding a blade and for use in lifting the blade is also provided.