Systems and methods for contact selection in deep brain stimulation

    公开(公告)号:US11253706B2

    公开(公告)日:2022-02-22

    申请号:US16703176

    申请日:2019-12-04

    Inventor: Hyun-Joo Park

    Abstract: The present disclosure provides systems and methods for selecting contacts for use in deep brain stimulation (DBS). A computing device includes a processor and a memory device communicatively coupled to the processor. The memory device includes instructions that, when executed, cause the processor to apply a spatial filter to local field potential (LFP) recordings for a plurality of contacts of a DBS lead, calculate a power spectral density (PSD) for each contact from the filtered LFP for that contact, calculate a parametric approximation for each PSD, select at least one frequency band based on the parametric approximations, calculate a spectral coherency matrix for each of the at least one selected frequency band, and calculate an eigenvector centrality for each spectral coherency matrix to facilitate identifying a contact for stimulation.

    IMPLANTABLE PULSE GENERATOR WITH MULTIPLE STIMULATION ENGINES

    公开(公告)号:US20210387007A1

    公开(公告)日:2021-12-16

    申请号:US17460227

    申请日:2021-08-29

    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.

    Implantable medical device with offline programming limitations and related methods of operations

    公开(公告)号:US11173313B2

    公开(公告)日:2021-11-16

    申请号:US16179753

    申请日:2018-11-02

    Abstract: In one embodiment, a method of programming an implantable medical device (IMD) to provide therapeutic operations for a patient, comprises: receiving first programming data by the IMD from the external programming device to provide therapeutic operations according to at least one instance of settings data during a first communication session; receiving second programming data by the IMD from the external programming device to define limitations of reprogramming during one or more subsequent offline programming sessions; conducting a second communication session between the IMD with an external programming device when network connectivity is not available; receiving third programming data by IMD from the external programming device to provide therapeutic operations according to at least one instance of settings data during the second communication session; and determining whether the third programming data is permitted according to limitations defined by the second programming data.

    SYSTEMS AND METHODS FOR ENHANCING OR AFFECTING NEURAL STIMULATION EFFICIENCY AND/OR EFFICACY

    公开(公告)号:US20210308456A1

    公开(公告)日:2021-10-07

    申请号:US17347865

    申请日:2021-06-15

    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters. Stimulation signals providing reduced power consumption with at least adequate symptomatic relief may be applied prior to moderate or significant power source depletion.

    Implantable pulse generator with multiple stimulation engines

    公开(公告)号:US11135431B2

    公开(公告)日:2021-10-05

    申请号:US16778255

    申请日:2020-01-31

    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.

    Neurostimulation method and system for active emulation of passive discharge in presence of MRI/EMI interference

    公开(公告)号:US10946199B2

    公开(公告)日:2021-03-16

    申请号:US16401943

    申请日:2019-05-02

    Abstract: A neurostimulation system (NS) includes an array of electrodes positioned within a patient with an active cathode electrode located proximate to target neural tissue. A control circuit is controls delivery of therapy during a therapy delivery interval, with the therapy being delivered between an anode electrode and the active electrode. A current regulator circuit (CRC) is connected to the cathode electrode and controls current flow through the cathode electrodes. The control circuit manages the CRC to control a discharge current flow over the discharge operation to discharge developed residual voltage between the anode electrode and the active electrode in a manner that follows an actively emulated passive discharge (AEPD) profile. During the discharge operation, the CRC is connected to the inactive electrode, and receives, as a first input, an EMI feedback signal. The CRC regulates the discharge current flow through the active electrode based on the EMI feedback signal, to maintain the AEPD profile over the discharge operation during an EMI event.

Patent Agency Ranking