NEUROSTIMULATION METHOD AND SYSTEM FOR MANAGING A DISCHARGE PROFILE IN PRESENCE OF MRI/EMI INTERFERENCE

    公开(公告)号:US20240082580A1

    公开(公告)日:2024-03-14

    申请号:US18515440

    申请日:2023-11-21

    CPC classification number: A61N1/36071 A61N1/08 A61N1/0456

    Abstract: A neurostimulation (NS) system and method are provided. The NS system includes an array of electrodes positioned within a patient. The array of electrodes includes an active electrode. The active electrode is configured to be a cathode electrode located proximate to neural tissue of interest that is associated with a target region. The NS system includes an anode electrode and an electromagnetic interference (EMI) antenna. A control circuit is configured to control delivery of a NS therapy during a therapy delivery interval. The NS therapy is to be delivered between the anode electrode and the active electrode. The NS system develops a residual voltage between the anode electrode and the active electrode over the therapy delivery interval. A current regulator (CR) circuit is connected to the cathode electrode. The CR circuit is configured to control current flow through the cathode electrodes. During a discharge operation, the control circuit is configured to manage the CR circuit to control a discharge current flow over the discharge operation to discharge the residual voltage after therapy delivery in a manner that follows an actively emulated passive discharge (AEPD) profile. During the discharge operation, the CR circuit is connected to the inactive electrode. The CR circuit receives, as a first input, an EMI feedback signal from the EMI antenna. The CR circuit is configured to regulate the discharge current flow through the active electrode based on the EMI feedback signal, to maintain the AEPD profile over the discharge operation while in a presence of an EMI event.

    SYSTEMS AND METHODS FOR DC PROTECTION IN IMPLANTABLE PULSE GENERATORS

    公开(公告)号:US20210330978A1

    公开(公告)日:2021-10-28

    申请号:US16855212

    申请日:2020-04-22

    Abstract: The present disclosure provides systems and methods for circuitry for an implantable pulse generator (IPG) of a neurostimulation system. The circuitry includes at least one anode node, at least one cathode node, a plurality of switching circuits, each switching circuit coupled to the at least one anode node and the at least one cathode node, and a plurality of output channels, each output channel coupled between an associated switching circuit and at least one electrode. The circuitry further includes a first DC blocking capacitor coupled between the at least one anode node and the plurality of switching circuits, a second DC blocking capacitor coupled between the at least one cathode node and the plurality of switching circuits. The circuitry further includes mitigation circuitry operable to limit DC leakage from the plurality of switching circuits through the plurality of output channels.

    NEUROSTIMULATION METHOD AND SYSTEM FOR ACTIVE EMULATION OF PASSIVE DISCHARGE IN PRESENCE OF MRI/EMI INTERFERENCE

    公开(公告)号:US20210178162A1

    公开(公告)日:2021-06-17

    申请号:US17186630

    申请日:2021-02-26

    Abstract: A neurostimulation (NS) system and method are provided. The NS system includes an array of electrodes positioned within a patient. The array of electrodes includes an active electrode. The active electrode is configured to be a cathode electrode located proximate to neural tissue of interest that is associated with a target region. The NS system includes an anode electrode and an electromagnetic interference (EMI) antenna. A control circuit is configured to control delivery of a NS therapy during a therapy delivery interval. The NS therapy is to be delivered between the anode electrode and the active electrode. The NS system develops a residual voltage between the anode electrode and the active electrode over the therapy delivery interval. A current regulator (CR) circuit is connected to the cathode electrode. The CR circuit is configured to control current flow through the cathode electrodes. During a discharge operation, the control circuit is configured to manage the CR circuit to control a discharge current flow over the discharge operation to discharge the residual voltage after therapy delivery in a manner that follows an actively emulated passive discharge (AEPD) profile. During the discharge operation, the CR circuit is connected to the inactive electrode. The CR circuit receives, as a first input, an EMI feedback signal from the EMI antenna. The CR circuit is configured to regulate the discharge current flow through the active electrode based on the EMI feedback signal, to maintain the AEPD profile over the discharge operation while in a presence of an EMI event.

    IMPLANTABLE PULSE GENERATOR WITH MULTIPLE STIMULATION ENGINES

    公开(公告)号:US20240216695A1

    公开(公告)日:2024-07-04

    申请号:US18609485

    申请日:2024-03-19

    CPC classification number: A61N1/36153 A61N1/3606 A61N1/37235 A61N1/378

    Abstract: An implantable medical device (IMD) includes multiple stimulation engines for independently stimulating respective electrode sets of a lead system while avoiding collisions and/or channel contention during stimulation delivery. A first voltage multiplier is configured to generate an adjustable target voltage having sufficient headroom at an output node that is commonly coupled to anodic nodes of respective stimulation engines. Each stimulation engine includes a secondary voltage multiplier to drive the respective anode and a current regulator powered by a floating voltage supply, wherein the current regulator is coupled to a cathodic node and configured to control how much stimulation current is pulled from the patient tissue.

    Neurostimulation method and system for active emulation of passive discharge in presence of MRI/EMI interference

    公开(公告)号:US11857789B2

    公开(公告)日:2024-01-02

    申请号:US17186630

    申请日:2021-02-26

    Abstract: A neurostimulation (NS) system and method are provided. The NS system includes an array of electrodes positioned within a patient. The array of electrodes includes an active electrode. The active electrode is configured to be a cathode electrode located proximate to neural tissue of interest that is associated with a target region. The NS system includes an anode electrode and an electromagnetic interference (EMI) antenna. A control circuit is configured to control delivery of a NS therapy during a therapy delivery interval. The NS therapy is to be delivered between the anode electrode and the active electrode. The NS system develops a residual voltage between the anode electrode and the active electrode over the therapy delivery interval. A current regulator (CR) circuit is connected to the cathode electrode. The CR circuit is configured to control current flow through the cathode electrodes. During a discharge operation, the control circuit is configured to manage the CR circuit to control a discharge current flow over the discharge operation to discharge the residual voltage after therapy delivery in a manner that follows an actively emulated passive discharge (AEPD) profile. During the discharge operation, the CR circuit is connected to the inactive electrode. The CR circuit receives, as a first input, an EMI feedback signal from the EMI antenna. The CR circuit is configured to regulate the discharge current flow through the active electrode based on the EMI feedback signal, to maintain the AEPD profile over the discharge operation while in a presence of an EMI event.

Patent Agency Ranking