Abstract:
An optical pickup apparatus having laser light sources emit a first light beam having a relatively shorter wavelength for a DVD and a second light beam having a longer wavelength for a CD-R, an objective lens having a focal length of an information recording surface in the DVD, an optical path control unit controls the light beams so that the light beam emitted from one of the laser light sources is directed to the objective lens and the light output from the objective lens is directed to the optical detection unit, and a phase shift unit between the optical path control unit and the objective lens and which shifts a phase of the second light to reduce the size of a beam spot which is formed the information recording surface in the CD-R.
Abstract:
A diffraction element for an optical pick-up apparatus is provided that enables more accurate focusing control. The diffraction element for an optical pick-up apparatus is divided into first and second regions, each being formed with a grid pattern in which grids are repeated with a predetermined pitch P. The grid pattern in at least one of the first and second regions is tilted by a predetermined angle with respect to a virtual line VL substantially perpendicular to a division line DL that divides the first and second regions.
Abstract:
An optical pickup apparatus compatible with at least two types of optical recording media, using light beams having respective different wavelengths for recording and reading information, the optical pickup apparatus including two laser light sources to emit light beams having the different wavelengths, a holographic lens including a holographic ring to transmit the light beams incident in an inner region of the holographic ring, and to diffract a specific light beam among the light beams emitted from the laser light sources incident in an outer region relative to the inner region, an objective lens to focus the light beams passed through the holographic ring lens on the respective information recording surfaces of the two types of the optical recording media, optical elements to alter optical paths of the light beams reflected from the information recording surfaces of the optical recording media to corresponding photodetectors.
Abstract:
A method of detecting a servo error, an apparatus therefor, a disk which maintains quantity of a servo error signal, a method of controlling a servo of an apparatus for recording data on and reproducing data from a disk, a method of detecting the tracking error, and a method of detecting tilt error of the apparatus. The apparatus for recording data on and reproducing data from the disk in which a recording area is divided into sectors, each sector has a header for indicating an address, each header has a first header and a second header which are recorded to deviate from the center of the track in opposite directions, and the first header and the second header have address areas in which the addresses of sectors are recorded and synchronous signal areas in which synchronous signals for detecting the address signals recorded in the address area are recorded, includes a reproducing signal generator, a sum signal RF_sum, and a push-pull signal RF_pp from an optical signal reflected from the disk, a header area detector, a first synchronous signal level detector, a second synchronous signal level detector, and a balance calculator for calculating the balance of the magnitude Ivfo1 of the first synchronous signal detected by the first synchronous signal level detector and the magnitude Ivfo3 of the second synchronous signal detected by the second synchronous signal level detector.
Abstract:
A DVD-RAM disk reproduction apparatus for reducing an error during detection of ID data, which includes a first operational amplifier for obtaining a sum signal resulting from the addition of four picked-up signals picked up by divided-by-four photodiodes from a DVD-RAM disk having a header region and a recording region, second and third operational amplifiers for respectively obtaining two sum signals corresponding to the upper and lower regions of the header region resulting from the addition of the first and second picked-up signals and the third and fourth picked-up signals, respectively, a fourth operational amplifier for obtaining a difference signal between the two sum signals, a header region detector for detecting upper and lower header region signals corresponding to the upper header region and the lower header region based on the difference signal, and detecting a header region signal corresponding to a header region by logically summing the two detected signals, a first multiplexer for selecting one of the two sum signals obtained by the second and third operational amplifiers according to the upper header region signal, and a second multiplexer for selecting the sum signal selected by the first operational amplifier and the sum signal selected by the first multiplexer according to the header region signal, to thereby output the selected result to an equalizer. Thus, during detection of ID data in a header region, a difference signal between the picked-up four signals is not used, but a signal resulting from the addition of two signals among the picked-up signals according to the corresponding upper and lower regions of the header region is selectively used. Accordingly, ID data can be detected from a signal without deterioration, to thereby reduce an error and thus improve a detection margin.
Abstract:
An optical recording/pickup head having compatibility with a recordable compact disk (CD-R) and a digital video disk (DVD) transmits a first light beam having a wavelength of 635 nm for a DVD emitted from a first light source and a second light beam having a wavelength of 780 nm for a CD-R emitted from a second light source to an objective lens, using a holographic variable aperture. The holographic variable aperture totally transmits the incident first light beam to the objective lens, and transmits part of the incident second light beam to the objective lens. The objective lens focuses the incident first and second light beams on the information recording surfaces of the CD-R and the DVD. The sizes of the light spots which are focussed on the information recording surfaces of the DVD and the CD-R by the objective lens are approximately 0.9 &mgr;m and 1.4 &mgr;m, respectively, which appropriate for recording and reproducing the respective disks. The light spots have only a main lobe.
Abstract:
A compatible optical pickup capable of recording or reproducing information on or from compact disc (CD) family media such as CD rewritable (CD-RW) and digital versatile disc (DVD) by adopting a stepped planar lens having a plurality of gratings. The compatible optical pickup includes a first optical source for emitting a first light beam having a predetermined wavelength; a second optical source for emitting a second light beam having a long wavelength relative to the first light beam; an optical path changing element for changing the traveling path of an incident light beam; an objective lens for condensing the first and second light beams onto optical discs having different thicknesses, respectively; an optical diffraction element having a first region which directly transmits the first and second light beams incident thereto, and a second region bounding the first region, which directly transmits the incident first light beam and diffractingly transmits the second light beam toward an optical axis; and a photodetector for detecting an information signal and an error signal from the first and second light beam which have been reflected by the optical discs and passed through the optical path changing element. Also, the optical diffraction element is a stepped planar lens in which one or more stepped pattern periods each having a plurality of annular gratings are arranged in the second region, wherein the depths of the gratings become smaller moving away from the optical axis, and the maximum depth thereof is a predetermined value.
Abstract:
An optical pickup device including an objective lens which is compatible with a plurality of optical disks of respectively different specifications, such as a digital versatile disk (DVD), a compact disk-recordable (CD-R) medium, a compact disk (CD) and a laser disk (LD). The optical pickup device includes a laser source to emit light, an objective lens to focus the light emitted from the laser source on respective information recording surfaces of a plurality of optical recording media as an optimal optical spot, and an optical detector to detect light reflected from the information recording surface of the optical recording medium on which the optical spot has been focused and transmitted through the objective lens. The objective lens includes a first lens area, a second lens area, and a third lens area to focus the light emitted from the laser source. The first lens area has an aspherical surface corresponding to a first optical recording medium and a second optical recording medium, the second lens area has an aspherical surface corresponding to the second optical recording medium, and the third lens area has an aspherical surface corresponding to the first optical recording medium. As a result, the optical pickup can be compatible with a plurality of the optical disks of a respectively different specification irrespective of the thickness of the disk.
Abstract:
An optical pickup compatible with a plurality of optical recording media each using light of a different wavelength. The optical pickup includes at least one light source, an objective lens having a function of focusing light emitted from the light source into the optimal light spot on an information recording surface of one of the plurality of the optical recording media, and a light detector to detect light transmitted through the objective lens after being reflected from the information recording surface of the optical recording medium on which the light spot is formed. The objective lens has an inner area, an annular lens area and an outer area such that the annular lens area divides the inner area from the outer area and has a ring shape centered at a vertex. The inner area, the annular lens area and the outer area have aspherical surface shapes to focus light transmitted through the inner area and the outer area into a single light spot by which information can be read from the information recording surface of a relatively thin first optical recording medium and scatter light transmitted through the annular lens area located between the inner area and the outer area so that information cannot be read from the information recording surface of the first optical recording medium, during reproduction of the first optical recording medium. The inner area and the annular lens area transmit light into a single light spot by which information can be read from the information recording surface of a relatively thick second optical recording medium and scatters light transmitted through the outer lens area so that information cannot be read from the information recording surface of the second optical recording medium, during reproduction of the second optical recording medium.
Abstract:
An optical pickup device which is capable of reproducing and recording information from at least two discs having different thicknesses includes a light source, an objective lens provided along the light path from the light source facing the plane of a disc and having a predetermined effective diameter, a beam splitter provided between the objective lens and the light source, a photodetector for detecting the beam split from the light splitter and reflected from the disc, and light controller provided along the light path facing the photodetector lens for controlling the light of the intermediate region between near- and far axis regions of an incident light beam. The optical pickup device is simplified and the manufacturing cost therefor is low. Also, by reducing the spherical aberration effect for the light, discs having different thicknesses can be used in a single disc drive.