Abstract:
A radio-frequency acquisition device for a magnetic resonance tomography apparatus has at least one reception antenna for acquisition of magnetic resonance signals and with an amplifier device to amplify acquired magnetic resonance signals. The amplifier device has an input transistor and a transformation device to transform the source impedance of the acquisition antenna into a source impedance adapted to the input transistor, and wherein the transformation device can be switched between at least two transformation ratios.
Abstract:
The transmission antenna apparatus is configured for emitting transmission magnetic fields in magnetic resonance imaging devices and includes one or more flat antennas. A magnetic resonance imaging device includes such a transmission antenna apparatus.
Abstract:
A sheath current for an imaging magnetic resonance tomography system is provided, wherein a coil element of the sheath current filter is embodied to surround a waveguide of the sheath current filter, a local coil connection, and a local coil.
Abstract:
At least two RF transmission coil arrangements are provided. Each of the at least two RF transmission coil arrangements includes at least one RF transmission antenna. The at least two RF transmission coil arrangements are actuatable by a transmission apparatus of the magnetic resonance imaging system for transmitting RF pulses.
Abstract:
A magnetic resonance imaging (MRI) system connection for a magnetic resonance imaging system, such as for an MRI local coil and/or patient couch, is provided. The MRI system connection is embodied with devices for a field-coupled transmission of signals.
Abstract:
An MR device includes at least one body coil for generating a B1 magnetic field and at least one radiofrequency line routed through the B1 magnetic field. The at least one radiofrequency line has at least one frequency filter for blocking a voltage induced by the B1 magnetic field. At least one section of the radiofrequency line routed through the B1 magnetic field is embodied in printed circuit board technology on at least one printed circuit board, and information-carrying signals may be transmitted over the at least one radiofrequency line on a different frequency than the frequency of the voltage induced by the B1 magnetic field.
Abstract:
A device for recovering a temporal reference in a free-running magnetic resonance tomography (MRT) receive chain includes a time reference encoder and a time reference decoder. The time reference encoder is configured to generate a modulation signal as a function of a reference clock, where the modulation signal is configured for a correlation with a temporal resolution less than a maximum predetermined phase deviation and a maximum that may clearly be identified. The time reference decoder is configured to receive, via the first signal input, a receive signal as a function of the modulation signal, perform a correlation with a reference signal, and generate a signal as a function of a temporal reference of the modulation signal in the receive signal in relation to the reference signal.
Abstract:
A local coil arrangement is provided herein. The local coil arrangement is particularly suitable for use in an intervention supported by magnetic resonance imaging. The local coil arrangement includes a plurality of electronic components such as at least one individual antenna is configured to receive a magnetic resonance signal. The local coil arrangement also includes a housing that encloses a hollow or material-filled housing interior. The electronic components are accommodated in the hermetically sealed housing interior. The housing is designed to be pressure- and temperature stable, such that the local coil arrangement is steam-sterilizable.
Abstract:
A method for calibrating at least one operating parameter of a magnetic resonance apparatus and a corresponding magnetic resonance apparatus and computer program product are provided. The at least one operating parameter includes a constant component and a variable component. The method includes, after a start-up of at least one part of the magnetic resonance apparatus, determining the variable component of the at least one operating parameter. The constant component of the at least one operating parameter is provided. The constant component and the variable component are used to calibrate the at least one operating parameter.
Abstract:
A method and a device for identifying a position of a local coil of a magnetic resonance imaging scanner relative to a position of a patient couch are provided. The device includes at least one reading unit that is configured to determine a position of at least one label at the local coil relative to the at least one reading unit. The device also includes a position determination apparatus that is configured to determine the position of the patient couch relative to the magnetic resonance imaging scanner. The device includes a position determination apparatus that is configured to determine the position of the local coil relative to the patient couch based on the determined position of the at least one label and the determined position of the patient couch.