Abstract:
An MR coil is provided including at least one antenna element. The antenna element has at least one expandable conductor section with a plastic cover and a core including conductive fluid.
Abstract:
A method for the control of a magnetic resonance system is provided. In a test phase before a magnetic resonance measurement, a test high-frequency pulse with several parallel individual high-frequency pulses is transmitted with a transmitter antenna arrangement over various different high-frequency transmitter channels. At lower transmitter power, the test high-frequency pulse generates essentially the same field distribution as an excitation high-frequency pulse to be transmitted during a subsequent magnetic resonance measurement. A high-frequency field generated by this test high-frequency pulse is measured in at least one area of a local pulse arrangement, and on the basis of the high-frequency field measured, a high-frequency field value that is to be anticipated at the local coil arrangement during the subsequent magnetic resonance measurement is determined. The control of the magnetic resonance system during a later magnetic resonance measurement includes taking the high-frequency field value into account.
Abstract:
A method for the control of a magnetic resonance system is provided. In a test phase before a magnetic resonance measurement, a test high-frequency pulse with several parallel individual high-frequency pulses is transmitted with a transmitter antenna arrangement over various different high-frequency transmitter channels. At lower transmitter power, the test high-frequency pulse generates essentially the same field distribution as an excitation high-frequency pulse to be transmitted during a subsequent magnetic resonance measurement. A high-frequency field generated by this test high-frequency pulse is measured in at least one area of a local pulse arrangement, and on the basis of the high-frequency field measured, a high-frequency field value that is to be anticipated at the local coil arrangement during the subsequent magnetic resonance measurement is determined. The control of the magnetic resonance system during a later magnetic resonance measurement includes taking the high-frequency field value into account.
Abstract:
A standing wave barrier, particularly for use in a magnetic resonance tomography device, has a body and an opening in the body that is fashioned to accommodate a cable, the opening being formed as an externally open groove along a longitudinal direction of the standing wave barrier, and is shaped so that the cable can glide in and out along the standing wave barrier through the groove.
Abstract:
An arrangement to transmit magnetic resonance signals has a local coil composed of a number of individual antennas for acquisition of radio-frequency signals of a magnetic resonance examination. Preamplifiers amplify the radio-frequency signals, and a transmission device transmits the radio-frequency signals from the local coil to the preamplifiers. The transmission device is fashioned as a readout coil and has a number of individual antennas. The individual antennas of the readout coil are magnetically coupled with the individual antennas of the local coil, with the individual antennas of the local coil and the individual antennas of the readout coil forming a linear MIMO transmission system describable by a transmission matrix.
Abstract:
A standing wave barrier, particularly for use in a magnetic resonance tomography device, has a body and an opening in the body that is fashioned to accommodate a cable, the opening being formed as an externally open groove along a longitudinal direction of the standing wave barrier, and is shaped so that the cable can glide in and out along the standing wave barrier through the groove.
Abstract:
In a method and arrangement for local manipulation of a B1 field in a first region of an examination subject in an examination volume of a magnetic resonance system, a B1 measurement value that represents the B1 field in the sub-volume during an adjustment measurement is integrally determined, and in desired radio-frequency signal parameters for a subsequent magnetic resonance measurement are predetermined on the basis of the determined B1 measurement value. At least during the adjustment measurement, the B1 field is influenced within a second region counter to the manipulation intended in the first region by means of an auxiliary coil element which is arranged in or at the second region of the sub-volume remote from the first region.
Abstract:
A standing wave barrier for at least one radio frequency cable having a cable axis has at least one metallic base web that proceeds parallel to the cable axis from a first web end to a second web end. The web ends are coupled to one another in terms of radio frequency terms via a capacitance, so that the base web and the capacitance together form a radio frequency resonant oscillator circuit. The base web and the capacitance are situated in one of two half-shells that can be connected to one another such that the radio frequency cable is clamped between them. The capacitance has an adjustable capacitor element that has a first capacitor surface and a second capacitor surface. The first capacitor surface is connected in electrically conductive fashion to the first web end, and the second capacitor surface is connected in electrically conductive fashion to the second web end. The first and the second capacitor surfaces are respectively capacitively coupled to a number of first counter-surfaces and second counter-surfaces. Adjustment of the adjustable capacitor element can be accomplished by making an electrically conductive connection between the first counter-surfaces and the second counter-surfaces.
Abstract:
An inductively coupled reception coil arrangement for magnetic resonance tomography, having at least two inter-nested individual coils, the outer primary coil of which serves as output coil for the inner secondary coil. The primary coil has a pre-amplifier decoupling device which closes it with high resistance.