Abstract:
An organic light emitting diode display substrate, comprises: a base substrate, and a first data line, a driving thin film transistor and an energy storage capacitor which are disposed on the base substrate, wherein the energy storage capacitor comprises a first capacitor plate and a second capacitor plate disposed opposite to each other, and the second capacitor plate is electrically connected to a gate of the driving thin film transistor, in a direction away from the base substrate, the first capacitor plate is disposed between the first data line and the second capacitor plate, wherein the display substrate further comprises a first shielding portion, which is electrically connected to the first capacitor plate and is disposed at least partially between the second capacitor plate and the first data line. A method of manufacturing the display substrate and a display device are further provided.
Abstract:
A liquid crystal display driving apparatus including a pixel voltage driving circuit for providing a periodical pulse high-voltage signal is provided. The liquid crystal display driving apparatus includes: a gate driving unit, a source driving unit, and a gate line and a date line intersected with each other to define a pixel region, in which a pixel electrode is provided, wherein the source driving unit includes: a pixel voltage driving circuit for providing a unidirectional voltage signal applied to the pixel electrode in the pixel region and for providing a periodical pulse high-voltage signal; and a common voltage driving circuit for providing a common voltage signal which corresponds to the unidirectional voltage signal provided by the pixel voltage driving circuit.
Abstract:
A display device and a video communication terminal are provided. The display device includes a transparent display panel configured to display an image, a camera, configured to acquire an image of an object in front of the transparent display panel. According to the display device, the camera shooting component acquires the image of the local user at the front side of the transparent display panel through the transparent display panel. When the users are making a video call, the camera shooting component can acquire a front image of the local user's face through the transparent display panel.
Abstract:
A pixel circuit and driving method, an array substrate, a display panel, and a display device are provided. The pixel circuit includes a voltage clamping unit, an energy storage unit, and a reference voltage terminal. The voltage clamping unit connects to the reference voltage terminal and a first terminal of the energy storage unit. The voltage clamping unit forms a voltage divider circuit to supply a divided reference voltage from the reference voltage terminal to the first terminal of the energy storage unit or pulls and clamps the voltage at the first terminal of the energy storage unit to a reference voltage at the reference voltage terminal.
Abstract:
The present invention provides an improved ion implantation method and an ion implantation apparatus for performing the improved ion implantation method, belongs to the field of ion implantation technology, which can solve the problem of the poor stability and uniformity of the ion beam of the existing ion implantation apparatus. The improved ion implantation method of the invention comprises steps of: S1, detecting densities and beam distribution nonuniformities under various decelerating voltages; S2, determining an operation decelerating voltage based on the beam densities and the beam distribution nonuniformities; and S3, performing an ion implantation under the determined operation decelerating voltage. The present invention ensures the uniformity and stability of the ion beam, and thus ensures the uniformity of performances of the processed base materials in each batch or among various batches.
Abstract:
The present disclosure provides a pixel circuit, a display panel and a driving method thereof. The pixel circuit comprises a charging module, a light-emitting device and a capacitor. The present disclosure achieves a pulse width modulation driving with a pixel data refreshing frequency that is equal to a frame frequency, and addresses the problem of a large operation current and a low service life with the light-emitting device in the pixel. Furthermore, it features in low power consumption, a simple structure and being easy to implement.
Abstract:
The invention relates to organic electroluminescent materials and provides 9,10-bis[2-(p-substituted phenyl)pyrimidin-4-yl] anthracene compounds and methods of preparing the same, organic electroluminescent devices comprising the compounds, and organic electroluminescent display apparatus comprising the devices. The compounds of the invention are easy to be synthesized and can be used as blue-phosphorescent organic electroluminescent materials. Due to the inherent ability of the materials to block holes, there is no need to arrange a hole-blocking layer between a light-emitting layer and an electron transport layer, which simplifies the manufacturing process of full color display panels of organic electroluminescent display apparatus and reduces the manufacture cost and time. The organic electroluminescent devices made from the materials exhibit high luminous efficiency.
Abstract:
The embodiment of the present invention provides a pixel structure, pixel unit structure, display panel and display apparatus, which is used to increase the electrical-optical efficiency of the display apparatus. The pixel structure includes an active matrix driving circuit, also includes at least two light emitting devices connected in series which are connected to the active matrix driving circuit, the light emitting devices compose the light emitting device group, and the active matrix driving circuit drives the light emitting devices to emit light.
Abstract:
A pixel structure, a display device having the pixel structure and a manufacturing method of the pixel structure are disclosed. The pixel structure comprises: a first insulation layer; a luminescent unit disposed on the first insulation layer and comprising a first electrode layer, a luminescent layer and a second electrode layer; a pixel defining layer configured for defining a pixel aperture, in which the luminescent unit is disposed; and a reflective assembly disposed around the pixel defining layer so as to reflect light entering the pixel defining layer from the luminescent layer to exit from an exit surface of the pixel structure. The reflective assembly is provided to reflect the light entering the pixel defining layer from the luminescent layer, so as to exit from the exit surface of the pixel structure. As a result, the light beams entering the pixel defining layer may be converted into effective beams for the pixel structure, thereby improving the display effect and reducing light dissipation.
Abstract:
A pixel driving circuit, driving method thereof, an array substrate and display apparatus, the pixel driving circuit comprises: a data line for providing a data voltage; a gate line for providing a scanning voltage; a first power supply line for providing a first power supply voltage; a second power supply line for providing a second power supply voltage; a light emitting device connected to the second power supply line; a driving transistor connected to the first power supply line; a storage capacitor having a first terminal connected to a gate of the driving transistor and configured to transfer information including the data voltage to the gate of the driving transistor; a resetting unit configured to reset a voltage across the storage capacitor as a predetermined signal voltage; a data writing unit configured to write information including the data voltage into the second terminal of the storage capacitor; a compensating unit configured to write information including a threshold voltage of the driving transistor and information of the first power supply voltage into the first terminal of the storage capacitor; and a light emitting control unit configured to write the first power supply voltage into the second terminal of the storage capacitor and control the driving transistor to drive the light emitting device to emit light.