Abstract:
An apparatus for monitoring of an ion beam. The apparatus may include a processor; and a memory unit coupled to the processor, including a display routine, where the display routine operative on the processor to manage monitoring of the ion beam. The display routine may include a measurement processor to receive a plurality of spot beam profiles of the ion beam, the spot beam profiles collected during a fast scan of the ion beam and a slow mechanical scan of a detector, conducted simultaneously with the fast scan. The fast scan may comprise a plurality of scan cycles having a frequency of 10 Hz or greater along a fast scan direction, and the slow mechanical scan being performed in a direction parallel to the fast scan direction. The measurement processor may also send a display signal to display at least one set of information, derived from the plurality of spot beam profiles.
Abstract:
A charged particle beam apparatus with improved depth of focus and maintained/improved resolution has a charged particle source, an off-axis illumination aperture, a lens, a computer, and a memory unit. The apparatus acquires an image by detecting a signal generated by irradiating a sample with a charged particle beam caused from the charged particle source via the off-axis illumination aperture. The computer has a beam-computing-process unit to estimate a beam profile of the charged particle beam and an image-sharpening-process unit to sharpen the image using the estimated beam profile.
Abstract:
An apparatus for characterizing a focused charged beam is provided. The apparatus includes a plurality of parallel conducting channels and at least one current sensing unit configured to measure current across each of the plurality of parallel conducting channels.
Abstract:
A current regulation method of multiple beams includes acquiring a current density distribution; selecting at least one beam whose current density is equal to or more than a threshold; measuring a current value of the at least one beam respectively by varying a voltage applied to the Wehnelt electrode and acquiring a correlation between the voltage and the current value; moving a stage to a position where the at least one beam is allowed to enter a current detector each time writing of a stripe region is completed; measuring, after moving the stage, a current value of the at least one beam while beams of the multiple beams whose current density is less than the threshold are blocked; operating a target voltage value applied to the Wehnelt electrode to cause the current value measured to be a target current value; and applying the target voltage value to the Wehnelt electrode.
Abstract:
A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The plurality of Faraday of the 2D profiler are arranged in a pattern that is offset in a direction. The 1D profiler is coupled to a first end of the 2D profiler and extends beyond two adjacent outer edges of the 2D profiler. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in the direction.
Abstract:
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Abstract:
A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
Abstract:
A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in a longitudinal direction and to facilitate rotation of the beam monitoring device about an axis.
Abstract:
A time-of-flight (TOF) ion sensor system for monitoring an angular distribution of ion species having an ion energy and incident on a substrate includes a drift tube wherein the ion sensor system is configured to vary an angle of the drift tube with respect to a plane of the substrate. The drift tube may have a first end configured to receive a pulse of ions from the ion species wherein heavier ions and lighter ions of the pulse of ions arrive in packets at a second end of the drift tube. An ion detector may be disposed at the second end of the ion sensor, wherein the ion detector is configured to detect the packets of ions derived from the pulse of ions and corresponding to respective different ion masses.
Abstract:
A vertical profile, a horizontal profile, and an integrated current value of an ion beam are measured by a plurality of stationary beam measuring instruments and a movable or stationary beam measuring device. At a beam current adjustment stage before ion implantation, a control device simultaneously performs at least one of adjustment of a beam current to a preset value of the beam current, adjustment of a horizontal beam size that is necessary to secure uniformity of the horizontal ion beam density, and adjustment of a vertical beam size that is necessary to secure the uniformity of the vertical ion implantation distribution on the basis of a measurement value of the stationary beam measuring instruments and the movable or stationary beam measuring device.