Abstract:
In one embodiment, a method includes receiving, by a first autonomous system border router (ASBR) of a first autonomous system (AS), a first plurality of provider-provisioned media access control (B-MAC) addresses via Interior Border Gateway Protocol (I-BGP). Each of first plurality of B-MAC addresses is associated with a provider edge (PE) device of the first AS. The first ASBR sends the first plurality of B-MAC addresses to a second ASBR of a second AS using Exterior Border Gateway Protocol (E-BGP). The first ASBR also receives via E-BGP a second plurality of B-MAC addresses each of which is associated with a PE device of the second AS. The first ASBR then distributes the second plurality of B-MAC addresses to each of the PE devices of the first AS using I-BGP.
Abstract:
In one embodiment, a particular PE device of a plurality of multi-homing PE devices between a core network and a local network determines a subset of traffic for which the particular PE device is responsible. The particular PE also establishes, with itself as root, a multicast tree within the local network for underlay multicast groups. Traffic received at the particular PE from the core network is admitted into the local network only if the core traffic corresponds to the subset of traffic for which the particular PE device is responsible (and mapped into one of the underlay multicast groups for which the particular PE device is the root). Also, multicast traffic received at the particular PE from the local network is forwarded into the core network only if the multicast traffic corresponds to the subset of traffic for which the particular PE device is responsible.
Abstract:
In one embodiment, one or more point-to-point (P2P) services are established between attachment circuits on provider edge (PE) devices in a computer network, and each of the one or more P2P services (e.g., Virtual Private Wire Service, VPWS) are associated with an Ethernet virtual private network (E-VPN) Ethernet Auto-Discovery (A-D) route, where links between the PE devices and customer edge (CE) devices are configured as Ethernet interfaces with Ethernet tagging. As such, the Ethernet A-D route may then be exchanged for each P2P service attachment circuit, and forwarding can be performed on the one or more P2P services without performing a media access control (MAC) address lookup and without performing MAC learning.
Abstract:
A technique is provided for mitigating loops in Ethernet networks. A first port in an Ethernet device receives an Ethernet frame. The frame includes a source identifier, a destination identifier, and a Virtual Local Area Network Identifier (VLAN ID). According to various embodiments, the VLAN ID (VID) has the encoding of both a community group as well as a source bridge ID. A VID database is accessed using the destination identifier and the VID to determine whether the first port has ingress enabled. A filtering database is accessed to determine an egress port for forwarding the Ethernet frame.
Abstract:
A system and associated methods provide a scalable solution for managing multiple multicast flows within a multicast group of a multicast network. The system groups redundant sources of the multicast group according to their associated multicast flows, assigns flow identifiers to each redundant source indicative of their associated multicast flows, and facilitates Single Forwarder election to select a Single Forwarder that belongs to the appropriate multicast flow. The system provides control plane extensions that enable signaling of which redundant source belongs to which multicast flow.
Abstract:
A computer network efficiently provides a multicast network flow to a multicast recipient across a multihomed network element. The multihomed network element includes network devices that receive multicast data from a source of a multicast network flow. Each particular network device that received the multicast data publishes a notification indicating that the multicast network flow is available from the particular network device. The computer network receives a subscription to the multicast network flow from a multicast recipient, and determines whether to bridge the multicast data across the multihomed network element based on a multicast configuration of the computer network. The multihomed network element provides the multicast data to the multicast recipient from at least one of the particular network devices that received the multicast data from the source of the multicast network flow.
Abstract:
In one embodiment, a method is performed. A device may include an interface in communication with a network. The device may determine whether an all-active multi-homed ethernet segment (ES) associated with the interface is enabled. On a condition that an all-active multi-homed ES is enabled, the device may determine an ethernet virtual private network (EVPN) designated forwarder (DF) state of the all-active multi-homed ES. If the all-active multi-homed ES is enabled and has an ethernet virtual private network (EVPN) designated forwarder (DF) state, the device may enter a protocol independent multicast (PIM) designated router (DR) state. If an all-active multi-homed ES is enabled and does not have an EVPN DF state, the device may enter a PIM non-DR state.
Abstract:
In one aspect, a method of IP obfuscation of a user device includes receiving, over an Extendible Authentication Protocol (EAP) session between a user device and a network access point, location preferences of the user device, generating, based on the location preferences or a network policy, a geohash for the user device, identifying, for the user device, an IP anchor, sending, over the EAP session, the geohash to the user device, and receiving, from the user device, network traffic, wherein the network access point utilizes the geohash and the IP anchor to route the network traffic for the user device and obfuscate IP address of the user device from third-party access.
Abstract:
A networking environment includes a first node and a second node configured as Ethernet Virtual Private Networking (EVPN) peers on an EVPN subnet that is coupled to a Layer 3 VPN over a core network. The first node receives a first multicast join request from a third node in the core network, the first multicast join request including a source address and multicast group address of a source of a multicast stream. The first node determines that the source address and the multicast group address for the source are behind the EVPN subnet at the second node. The first node sends to the second node, a control plane join request message that includes a receiver identifier that identifies the third node as a receiver of the multicast stream, the receiver identifier enabling the second node to forward the multicast stream directly into the core network to the third node.
Abstract:
Systems, methods, and computer-readable media are provided for securely advertising autoconfigured prefixes in a cloud environment. In some examples, a method can include, receiving, by a first router, an indication of an available network address prefix. In some aspects, the method can also include selecting, by the first router, a first network address prefix that is within the available network address prefix, wherein the first network address prefix provides at least one route to one or more network elements associated with the first router. In some cases, the method may further include sending, to a second router, a message including a stub registration option that indicates the first network address prefix.