Abstract:
The present disclosure is directed to a rotor blade assembly for a wind turbine that controls pitch bearing load distribution. The assembly includes a rotor blade having a body shell extending between a blade root and tip, a pitch bearing at an interface between the blade root and a hub of the wind turbine, and plurality of blade bolts coupling the blade root to the hub through the pitch bearing. The pitch bearing includes an outer bearing race and an inner bearing race rotatable relative to the outer race. Thus, in one embodiment, the blade bolts couple the blade root to the hub through the inner race of the pitch bearing. Further, each of the blade bolts has a first end and a second end defining a length therebetween and at least two of the blade bolts have varying lengths so as to distribute loads experienced by the pitch bearing.
Abstract:
A rotor blade for a wind turbine is disclosed. The rotor blade may generally include a shell having a pressure side and a suction side. The shell may define an outer surface along the pressure and suction sides over which an airflow travels. The rotor blade may also include a spoiler having a fixed end and a free end. The fixed end is connected to the outer surface so as to enable a hinge action, such as a living hinge. The free end includes a top flange and a bottom flange configured to engage opposite sides of the shell and is pivotal relative to the fixed end between a recessed position and an elevated position. The free end has a range of motion limited by contact of the top flange and the bottom flange with the shell. Further, the spoiler is configured to separate the airflow from the outer surface when the spoiler is in the elevated position.
Abstract:
Methods of manufacturing rotor blades for a wind turbine and rotor blades produced in accordance with such methods are disclosed. In one embodiment, the method includes forming a first spar cap of the rotor blade from a first resin material. Another step includes placing the first spar cap within a first shell mold of the rotor blade. A further step includes infusing a second resin material into the first shell mold to form a first shell member of the rotor blade. Thus, at least a portion of the first spar cap is infused within the first shell member. Further, the second resin material is different than the first resin material. The method also includes infusing the second resin material into a second shell mold to form a second shell member of the rotor blade. Another step includes bonding the first and second shell members together so as to form the rotor blade.
Abstract:
Rotor blades for a wind turbines include a shell having a pressure side and a suction side and a plurality of surface features disposed adjacent at least one of the pressure side and the section side. The plurality of surface features is further moveable between a spoiler position and a vortex generator position.
Abstract:
Methods for producing ultrasonic sound emissions from wind turbines, active systems for emitting ultrasonic sounds from wind turbines, and wind turbines are provided. In one embodiment, a method includes operating the wind turbine with an ultrasonic sound emitting device mounted on or within a component of the wind turbine, and receiving in a controller at least one indicator. The method further includes determining if an operating condition exists based on the at least one indicator, and supplying a fluid flow through an outlet of the ultrasonic sound emitting device such that an ultrasonic sound emission is produced by the ultrasonic sound emitting device if the operating condition exists.