摘要:
A rotor blade for a wind turbine is disclosed. The rotor blade may generally include a shell having a pressure side and a suction side. The shell may define an outer surface along the pressure and suction sides over which an airflow travels. The rotor blade may also include a spoiler having a fixed end and a free end. The fixed end is connected to the outer surface so as to enable a hinge action, such as a living hinge. The free end includes a top flange and a bottom flange configured to engage opposite sides of the shell and is pivotal relative to the fixed end between a recessed position and an elevated position. The free end has a range of motion limited by contact of the top flange and the bottom flange with the shell. Further, the spoiler is configured to separate the airflow from the outer surface when the spoiler is in the elevated position.
摘要:
The present disclosure is directed to a vortex generator configured for mounting to either of a suction side or a pressure side of a rotor blade. The vortex generator includes a base portion having a contour in an uninstalled state that substantially aligns with or conforms to a contour of a plurality of locations of either on the suction side or the pressure side of the rotor blade. Further, the vortex generator includes a protrusion member extending upwardly from the base portion. The protrusion member includes a plurality of tines separated by at least one slit. Moreover, the base portion and the protrusion member are constructed of a rigid material. In addition, the vortex generator includes a flexible coating material configured at least partially around the base portion and/or within or around the at least one slit.
摘要:
Root assemblies for rotor blades include a root portion having an inner surface and an outer surface, wherein the root portion is configured to extend from an airfoil portion of the rotor blade. The root assemblies further include at least one external structural connection support connected to at least the inner surface or the outer surface of the root portion, wherein the at least one external structural connection support connects to a hub of a wind turbine to facilitate the connection of the rotor blade.
摘要:
The invention is directed to a rotor blade assembly for a wind turbine designed to mitigate pitch bearing loads. The rotor blade assembly includes a rotor blade, a pitch bearing, and at least one shim plate. The rotor blade includes a body extending between a blade root and a blade tip. The pitch bearing includes an outer race, an inner race, and a plurality of roller elements between the outer race and the inner race. As such, the inner race is rotatable relative to the outer race. The at least one shim plate may be configured between the inner race and the blade root or between the outer race and a hub of the wind turbine so as to mitigate loads experienced by the pitch bearing.
摘要:
A rotor blade for a wind turbine is disclosed. The rotor blade may generally include a shell having a pressure side and a suction side. The shell may define an outer surface along the pressure and suction sides over which an airflow travels. The rotor blade may also include a spoiler having a fixed end and a free end. The fixed end is connected to the outer surface so as to enable a hinge action, such as a living hinge. The free end includes a top flange and a bottom flange configured to engage opposite sides of the shell and is pivotal relative to the fixed end between a recessed position and an elevated position. The free end has a range of motion limited by contact of the top flange and the bottom flange with the shell. Further, the spoiler is configured to separate the airflow from the outer surface when the spoiler is in the elevated position.
摘要:
A counterweight system for mounting a rotor blade on a balanced rotatable hub of a wind turbine is disclosed. The rotatable hub can have at least one blade root region configured to receive a blade root of the rotor blade, and also have a pitch system configured to rotate the rotor blade around a pitch axis. The counterweight system can have at least one support structure having a proximal end spaced apart from a distal end with the proximal end mountable to at least one blade root region of the rotatable hub. The at least one counterweight mass can be at least partially filled with fluid and coupled to the distal end of the at least one support structure. The at least one support structure can be arranged substantially parallel to the pitch axis such that the pitch system rotates the counterweight mass about the pitch axis.
摘要:
A system for locating airflow modifiers for installation on wind turbine rotor blades may generally include a plurality of airflow modifiers, with each airflow modifier including a base defining an outer profile that differs from the outer profiles of the remainder of the airflow modifiers. The system may also include a blade shell defining an exterior surface. The base of each airflow modifier may be configured to be coupled to the exterior surface of the blade shell. In addition, the system may include an installation template provided on the exterior surface of the blade shell. The installation template may define a different installation location for each of the airflow modifiers. Moreover, the installation template may include a geometric feature at each installation location that at least partially matches the outer profile of the airflow modifier configured to be installed at such installation location.
摘要:
The invention is directed to a rotor blade assembly for a wind turbine designed to mitigate pitch bearing loads. The rotor blade assembly includes a rotor blade, a pitch bearing, and at least one shim plate. The rotor blade includes a body extending between a blade root and a blade tip. The pitch bearing includes an outer race, an inner race, and a plurality of roller elements between the outer race and the inner race. As such, the inner race is rotatable relative to the outer race. The at least one shim plate may be configured between the inner race and the blade root or between the outer race and a hub of the wind turbine so as to mitigate loads experienced by the pitch bearing.
摘要:
In one aspect, a method for manufacturing a rotor blade for a wind turbine is disclosed. The method may generally include assembling a blade blank comprising a shear member and a volume of core material and removing material from the blade blank to form a body having a pressure side and a suction side extending between a leading edge and a trailing edge. The shear member may have a first end disposed adjacent to the pressure side and a second end disposed adjacent to the suction side. In addition, the method may include positioning a skin around an outer perimeter of the body.
摘要:
In one aspect, a method for manufacturing a rotor blade for a wind turbine is disclosed. The method may generally include assembling a blade blank comprising a shear member and a volume of core material and removing material from the blade blank to form a body having a pressure side and a suction side extending between a leading edge and a trailing edge. The shear member may have a first end disposed adjacent to the pressure side and a second end disposed adjacent to the suction side. In addition, the method may include positioning a skin around an outer perimeter of the body.