Abstract:
The present invention provides an autostereoscopic display device including: a display device; and a liquid crystal lens cell arranged on the display device, the liquid crystal lens cell including: a first substrate; a second substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; a first electrode arranged on the first substrate on the side of the liquid crystal-layer; and a second electrode arranged on the second substrate on the side of the liquid crystal layer, in which the liquid crystal lens cell has a water-absorption layer arranged on at least one of the first substrate and the second substrate on the side of as the liquid crystal layer.
Abstract:
According to one embodiment, a display device includes a first color film of a first color and a second color film of a second color, wherein the irradiator comprises a first light source of a third color and a second light source of a fourth color, the first color and the second color have a complementary color relationship, lightness of the first color is greater than lightness of the second color, a first total displayable area of the first color film is larger than a second total displayable area of the second color film, and the irradiator is configured to radiate light of the first light source and the second light source in a switching manner by time division.
Abstract:
A display device includes a display panel and a backlight. The display panel has the first substrate, the second substrate, a liquid crystal layer sandwiched between the first and second substrates, the first circularly polarizing plate arranged on the observer's side of the first substrate, the second circularly polarizing plate arranged between the second substrate and the backlight, and a scattering film arranged on the observer's side of the first circularly polarizing plate.
Abstract:
There is provided a technology capable of reducing crosstalk at the time of 3D display in a display device using a liquid crystal lens that forms cylindrical lenses by controlling a voltage applied to a liquid crystal panel. The display device includes a liquid crystal display panel which includes a substrate including a plurality of strip-shaped transparent electrodes and a plurality of strip-shaped light shielding portions overlapping with the electrodes. The display device displays an image by switching a two-dimensional display and a three-dimensional display, and the cylindrical lenses making up a parallax barrier, are formed by controlling a refraction index of a liquid crystal layer.